Vì n; n+1 là 2 số nguyên tố cùng nhau mà UwCLNcuar 2 số nguyên tố cùng nhau bằng 1 nên suy ra ƯCLN(n;n+1)=1
Vì n; n+1 là 2 số nguyên tố cùng nhau mà UwCLNcuar 2 số nguyên tố cùng nhau bằng 1 nên suy ra ƯCLN(n;n+1)=1
Cho m,n là hai số tự nhiên thỏa mãn ƯCLN(m,n)=1. Tìm ƯCLN(m2,n)
ƯCLN(n;n+1) (n thuộc N ) là
a. Tìm ƯCLN 2 n + 2 ; 2 n ; n ∈ N * .
b. Tìm ƯCLN 3 n + 2 ; 2 n + 1 với n ∈ N .
Cho ƯCLN(n;n+1)=1. Chứng minh rằng n+1 và 2n+1 là 2 số nguyên tố cùng nhau
a. Tìm ƯCLN(2n+2;2n); (n ∈ N*) .
b. Tìm ƯCLN(3n+2 ;2n+1) với n ∈ N
Bài 1: Tìm ƯCLN(3n+1và 5n+4) với n thuộc N biết rằng 2 số này không NTCN
Bài 2: Cho a;b là hai số tự nhiên không NTCN a=4n+3;b=5n+1(n thuộc N).Tìm ƯCLN(a;b)
Tìm ƯCLN của n(n + 1)/2 và 2n + 1 (Với n là số tự nhiên khác 0)
tìm n thuộc N để ƯCLN của 4n+3 và 2n+3 là 1
n+1 và 2n+3 là hai số nguyên tố cùng nhau (n thuộc N*)
Tìm ƯCLN (n+1 ; 2n+3)
Cho m,n thuộc N* thỏa ƯCLN(m;n)=1.Tìm ƯCLN (4m+3n;5m+2n).