PB

Từ tập A = {1;2;3;4;5;6;7;8;9} có thể lập được tất cả bao nhiêu số tự nhiên chia hết cho 3 và ba chữ số phân biệt

A. 45

B. 99

C. 150

D. 180

CT
26 tháng 4 2019 lúc 5:15

Đáp án D

Ta có bộ 3 số có tổng chia hết cho 3 là: {1;2;3}, {1;2;6}, {1;2;9}, {1;3;5}, {1;3;8}, {1;4;7}, {1;5;6},{1;5;9}, {1;6;8}, {1;8;9}, {2;3;4}, {2;3;7}, {2;4;6}, {2;4;9}, {2;5;8}, {2;6;7}, {2;7;9}, {3;4;5}, {3;4;8}, {3;5;7}, {3;6;9}, {3;7;8}, {4;5;6}, {4;5;9}, {4;6;8}, {5;6;7}, {6;7;8}, {7;8;9}.

Mỗi bộ số ta lập được 3! = 6 số.

Vậy có 30.6=180 số.

Bình luận (1)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
GH
Xem chi tiết
PB
Xem chi tiết