Chương II - Đường tròn

HL

Từ một điểm m nằm ngoài đường tròn (O) ta vẽ hai tiếp tuyến MA MB và cát tuyến MCD ko đi qua tâm O, gọi I là trung điểm của CD. Cm tứ giác MAOB và MIOB nội tiếp

AH
30 tháng 4 2021 lúc 1:26

Lời giải:

Vì $MA,MB$ là tiếp tuyến của $(O)$ nên:

$MA\perp OA, MB\perp OB$

$\Rightarrow \widehat{MAO}=\widehat{MBO}=90^0$

Tứ giác $MAOB$ có tổng 2 góc đối: $\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0$ nên là tứ giác nội tiếp (đpcm).

Vì $OC=OD=R$ nên tam giác $OCD$ cân tại $O$

Do đó đường trung tuyến $OI$ đồng thời là đường cao

$\Rightarrow \widehat{OIM}=90^0$

Tứ giác $MIOB$ có tổng 2 góc đối $\widehat{OIM}+\widehat{OBM}=90^0+90^0=180^0$ nên là tứ giác nội tiếp (đpcm)

Bình luận (1)
AH
30 tháng 4 2021 lúc 1:31

Hình vẽ:

undefined

Bình luận (0)

Các câu hỏi tương tự
HL
Xem chi tiết
NH
Xem chi tiết
MT
Xem chi tiết
3M
Xem chi tiết
NK
Xem chi tiết
HB
Xem chi tiết
HB
Xem chi tiết
NA
Xem chi tiết
NM
Xem chi tiết