PB

Tứ giác ABCD có tọa độ các đỉnh như sau A(0;2); B(3; 0); C(0;-2) ; D(-3;0).Tứ giác ABCD là hình gì ? Tính chu vi của tứ giác đó.

CT
27 tháng 10 2017 lúc 4:18

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có: A(0;2) và C(0;-2) là hai điểm đối xứng qua O(0;0)

⇒ OA = OC

B(3;0) và D(-3; 0) là hai điểm đối xứng qua O(0;0)

⇒ OB = OD

Tứ giác ABCD là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)

Lại có: Ox ⊥ Oy hay AC ⊥ BD.

Vậy tứ giác ABCD là hình thoi

Trong ∆ OAB vuông tại O, theo định lý Pi-ta-go ta có:

A B 2 = O A 2 + O B 2

A B 2 = 2 2 + 3 2  = 4 + 9 = 13

AB = 13

Vậy chu vi của hình thoi bằng 4 13

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
1H
Xem chi tiết
PB
Xem chi tiết
NV
Xem chi tiết
NQ
Xem chi tiết
NQ
Xem chi tiết
KD
Xem chi tiết
TT
Xem chi tiết
BN
Xem chi tiết