cho tứ giác ABCD có 2 đường chéo AC,BD vuông góc với nhau. gọi M,N,L lần lượt là trung điểm của AB,AD và đường chéo AC. Từ M kẻ đường thẳng vuông góc với CD cắt AC tại H.
CMR H là trực tâm của tam giác MNL
Tứ giác ABCD có 2 đường chéo AC và BD vuông góc với nhau.Gọi M,N,L lần lượt là trung điểm AB,AD và đường chéo AC . Từ M kẻ đường thẳng vuông góc với CD cắt AC tại H
Chứng minh rằng:H là trực tâm của tam giác MNL
Giups mình nha các bạn!
Tứ giác ABCD có 2 đường chéo AC, BD vuông góc với nhau. Gọi M, N, L lần lượt là trung điểm AB, AD, AC. Từ M kẻ đường thẳng vuông góc với CD, cắt AC tại H. CMR: H là trực tâm của \(\Delta MNL\)
Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.
Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.
Bài 6. Cho tứ giác ABCD có hai đường chéo cắt nhau tại I thỏa mãn tam giác AID đòng dạng tam giác BIC. Kẻ IH ⊥ AD, IK ⊥ BC. M, N lần lượt là trung điểm AB, CD. Chứng minh rằng MN ⊥ HK.
Bài 7. Cho tứ giác ABCD có hai đường chéo cắt nhau tại O. Gọi M, N lần lượt là trung điểm AB, CD; H, K lần lượt là trực tâm các tam giác AOD, BOC. Chứng minh rằng MN ⊥ HK.
Bài 8. Cho tam giác ABC. Các đường cao AD, BE, CF . M thuộc tia DF , N thuộc tia DE sao cho ∠M AN = ∠BAC. Chứng minh rằng A là tâm đường tròn bàng tiếp góc D của tam giác DMN .
Bài 9. Cho tứ giác ABCD có hai đường chéo AC = BD. Về phía ngoài tứ giác dựng các tam giác cân đồng dạng AMB và CND (cân tại M, N ). Gọi P, Q lần lượt là trung điểm của AD, BC. Chứng minh rằng M N vuông góc với PQ.
Bài 10. Cho tam giác ABC. Các đường cao AD, BE, CF . Trên AB, AC lấy các điểm K, L sao cho ∠FDK = ∠EDL = 90◦. Gọi M là trung điểm KL. Chứng minh rằng AM ⊥ EF .
Mong các bạn giúp đỡ mình. Giúp được bài nào thì giúp nhé.
CÁC BẠN GIÚP MÌNH VỚI
bài 1: cho hình thang abcd có ab // cd , ab=bc .
a,CM : ca là tia phân giác của góc bcd
b,gọi m,n,e,f lần lượt là trung điểm của ad,bc,ca,bd. CM m,n,e,f thẳng hàng
bài 2 cho tứ giác abcd có ac vuông góc với bd gọi m,n,l lần lượt là trung điểm của ab,ad,ac . từ m kẻ đường thẳng vuông góc với cd cắt ac tại h .
CM : h là t.tâm tam giác mnl
Cho hình thang ABCD có AB//CD (AB<CD), M là trung điểm AD. Qua M vẽ đường thẳng // với 2 đáy của hình thang cắt 2 đường chéo BD và AC lần lượt tại E,F.
a) Chứng minh N, E, F lần lượt là trung điểm của BC, BD, AC
b) Gọi I là trưng điểm AB, đường thẳng vuông góc với IE cắt với nhau tại E và đường thẳng vuông góc với IF tại F cắt nhau tại K. Chứng minh KC=KD
cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi E, F lần lượt là trung điểm của AB, BC. Chứng minh rằng đường thẳng đi qua E vuông góc với CD, đường thẳng đi qua F vuông góc với AD và một trong hai đường chéo đồng quy
cho tứ giác ABCD có 2 đường chéo AC và BD vuông góc với nhau. Gọi E,F lần lượt là trung điểm của AB, BC. Chứng minh rằng đường thẳng đi qua E vuông góc với CD, đường thẳng đi qua F vuông góc với AD và 1 trong 2 đường chéo đồng quy.
Cho tứ giác ABCD có các đường chéo AC và BD cắt nhau ở O và AD vuông góc với AC ,
BD vuông góc với BC. Gọi E là giao điểm của ad và bc. Gọi d là đường thẳng đi qua trung điểm EO và CD
a) C/m : d là đường trung trực của đoạn AB