1) Cho \(\frac{a}{b}=\frac{c}{d}\). Chứng minh: \(\frac{a}{3a+b}=\frac{c}{3c+d}\)
2) Cho\(\frac{a}{b}=\frac{c}{d}\). Chứng minh:
a) \(\frac{a^2-d^2}{c^2-d2}=\frac{ab}{cd}\)
b) \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)
Chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)ta suy ra được tỉ lệ thức \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}và\left(\frac{a+b}{c+d}\right)^2=\frac{ab}{cd}\)
Chào các bạn, hôm nay mình có một bài toán khá khó muốn nhờ các bạn giải giúp
a) Chứng minh rằng nếu\(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
b) Cho \(\frac{a}{b}=\frac{c}{d}\). Hãy chứng minh: \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)chứng minh rằng \(\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Cho \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh rằng:
a) \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
b) \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{ab}{cd}\)
Cho \(\frac{a}{b}=\frac{c}{d}.\) Chứng minh:
\(a.\) \(\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\)
\(b.\) \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)
Cho \(\frac{a}{b}=\frac{c}{d}\) . Chứng minh:
a, \(\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\)
b,\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)
\(\frac{2x-3y}{2}=\frac{4y-2z}{3}=\frac{3z-4x}{4}\) và 3x +2y+z=17
Cho \(\frac{a}{b}=\frac{c}{d}\)chứng minh rằng
\(\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d^2\right)}=\frac{\left(a+b^2\right)}{\left(c+d\right)^2}\)
Cho\(\frac{a}{b}=\frac{c}{d}\).Chứng minh \(\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Cho tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\). Chứng minh các tỉ lệ thức sau:
\(\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\)và \(\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(c+d\right)^2}{c^2+d^2}\)