H24

Từ điểm M ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến MA, MB và cát tuyến MNP tới
đường tròn (O); gọi K là trung điểm của NP. Chứng minh rằng: 5 điểm M, A, O, K, B cùng thuộc
1 đường tròn

AH
18 tháng 11 2023 lúc 21:11

Lời giải:

Vì $MA,MB$ là tiếp tuyến của $O$ nên $MA\perp OA, MB\perp OB$

$\Rightarrow \widehat{MAO}=\widehat{MBO}=90^0$

Xét tứ giác $MAOB$ có $\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0$. Mà 2 góc này đối nhau nên $MAOB$ là tứ giác nội tiếp.

$\Rightarrow M, A,O,B$ cùng thuộc 1 đường tròn (1)

Mặt khác:

Tam giác $ONP$ cân tại $O$ (do $ON=OP=R$) nên trung tuyến $OK$ đồng thời là đường cao.

$\Rightarrow \widehat{MKO}=90^0$

Xét tứ giác $MAKO$ có $\widehat{MAO}=\widehat{MKO}=90^0$. Mà 2 góc này cùng nhìn cạnh $MO$ nên $MAKO$ là tứ giác nội tiếp.

$\Rightarrow M,A,K,O$ cùng thuộc 1 đường tròn (2)

Từ $(1); (2)\Rightarrow M, A, O, K,B$ cùng thuộc 1 đường tròn.

Bình luận (0)
AH
18 tháng 11 2023 lúc 21:15

Hình vẽ:

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
KH
Xem chi tiết
LA
Xem chi tiết
LM
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết