PB

Từ các số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số tự nhiên lẻ có bốn chữ số đôi một khác nhau và phải có mặt chữ số 1?

A. 90

B. 80

C. 126

D. 120

CT
25 tháng 10 2019 lúc 8:50

Đáp án C

    Trước tiên ta đếm số các số lẻ có bốn chữ số đôi một khác nhau lập được từ các số đã cho: có 3 cách chọn chữ số hàng đơn vị, có 4 cách chọn chữ số hàng nghìn, có  A 4 2 = 6 . 2 cách chọn hai chữ số hàng trăm và hàng chục. Như vậy có 3.4.6.2=144 số như trên.

    Tiếp theo ta đếm số các số lẻ có bốn chữ số đôi một khác nhau và không có mặt chữ số 1: Tương tự trường hợp trên, ta được số các số thuộc loại này là: 2.3.3=18.

Vậy số các số tự nhiên lẻ có bốn chữ số đôi một khác nhau mà phải có mặt số 1 là: 144 - 18 = 126

Bình luận (0)