TH1: 2 chẵn 2 lẻ
=>Có \(C^2_5\cdot C^2_4\cdot2=120\left(cách\right)\)
TH2: 3 lẻ, 1 chẵn
=>Có \(C^3_5\cdot4\cdot4!=960\left(cách\right)\)
TH3: 4 lẻ
=>Có \(C^4_5\cdot4!=120\left(cách\right)\)
=>Có 120+960+120=1200 cách
TH1: 2 chẵn 2 lẻ
=>Có \(C^2_5\cdot C^2_4\cdot2=120\left(cách\right)\)
TH2: 3 lẻ, 1 chẵn
=>Có \(C^3_5\cdot4\cdot4!=960\left(cách\right)\)
TH3: 4 lẻ
=>Có \(C^4_5\cdot4!=120\left(cách\right)\)
=>Có 120+960+120=1200 cách
Từ các số 0, 1, 2, 4,5, 6, 8, 9 có thể lập đc bao nhiêu số có 4 chữ số khác nhau và là số lẻ
Từ 6 số 0,1,2,3,4,5 có thể lập được bao nhiêu số có 3 chữ số khác nhau và lớn hơn 300
số các số tự nhiên có 7 chữ số trong đó có hai chữ số không sao cho hai chữ số 0 không đứng cạnh nhau và các chữ số khác chỉ xuất hiện 1 lần
Gọi S là tập hợp tất cả các số tự nhiên gồm 5 chữ số đôi một khác nhau được lập từ các chữ số 5, 6, 7, 8, 9. Tính tổng tất các số thuộc tập S.
có 50 tấm thẻ đánh số từ 1 đến 50. lấy ngẫu nhiên 8 tấm thẻ. xác suất để lấy được 4 tấm ghi số chẵn, 4 tấm ghi số lẻ và trong 8 tấm thẻ đó có đúng 1 tấm chia hết cho 5 gần nhất với giá trị nào
có 4 hành khách đi tàu có 5 toa. có bao nhiêu cách sắp xếp 3 người cùng lên 1 toa và người còn lại lên toa khác
Cho đường tròn (C) có tâm I(1;2) và bán kính bằng 3. Chứng minh rằng tập hợp các điểm M mà từ đó ta vẽ được hai tiếp tuyến với (C) tạo với nhau một góc \(60^0\) là một đường tròn. Hãy viết phương trình đường tròn đó ?
Một tổ có 8 học sinh nam và 7 học sinh nữ. Chia tổ thành 3 nhóm mỗi nhóm 5 người để làm 3 nhiệm vụ khác nhau. Tính xác suất để khi chia ngẫu nhiên nhóm nào cũng có nữ
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) : \(\left(x-1\right)\left(^2y+2\right)^2=9\) và đường thẳng \(d:3x-4y+m=0\). Tìm m để trên d có duy nhất một điểm P mà từ đó có thể kẻ được hai tiếp tuyến PA, PB với (C) (A, B là các tiếp điểm) sao cho tam giác PAB đều