PB

Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên chẵn có sáu chữ số và thoả mãn điều kiện: sáu chữ số của mỗi số là khác nhau và chữ số hàng nghìn lớn hơn 2?

A. 720 số.

B. 360 số.

C. 288 số.

D. 240 số.

CT
10 tháng 10 2018 lúc 8:22

Đáp án D

Ta xét hai trường hợp chữ số hàng đơn vị bằng 2 và khác 2.

+) Chữ số hàng đơn vị là 2

Số hàng nghìn lớn hơn 2 nên có 4 cách chọn (3, 4, 5, 6). Còn 4 chữ số sắp xếp vào 4 vị trí còn lại có A 4 4 = 4 ! = 24  cách sắp xếp.

Như vật tổng số chữ số thỏa mãn bài toán trong trường hợp này là: N 1 = 4.24 = 96  (số)

+) Chữ số hàng đơn vị khác 2 nên có thể bằng 4 hoặc 6

Số hàng nghìn lớn hơn 2 nên có 3 cách chọn (3, 5 và 6 hoặc 4). Còn 4 chữ số sắp xếp vào 4 vị trí còn lại có A 4 4 = 4 ! = 24  cách sắp xếp.

Như vật tổng số chữ số thỏa mãn bài toán trong trường hợp này là N 2 = 2.3.24 = 144  (số)

=> Tổng số các chữ số thỏa mãn bài toán:

N = N 1 + N 2 = 96 + 144 = 240  (số).

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết