PB

Trước kỳ  thi học kỳ  2 của lớp 11 tại trường FIVE, giáo viên Toán lớp FIVA giao cho học sinh để cương ôn tập gồm 2n bài toán, n là số nguyên dương lớn hơn 1. Đề thi học kỳ của lớp FIVA sẽ gồm 3 bài toán được chọn ngẫu nhiên trong số 2n bài toán đó. Một học sinh muốn không phải thi lại, sẽ  phải làm được ít nhất 2 trong số  3 bài toán đó. Học sinh TWO chỉ  giải chính xác được đúng 1 nửa số bài trong đề cương trước khi đi thi, nửa còn lại học sinh đó  không thể  giải được. Tính xác suất để  TWO không phải thi lại ?

A. c

B.  1 2

C.  3 4

D.  1 3

CT
6 tháng 12 2017 lúc 7:47

Đáp án B

Phương pháp : Chia hai trường hợp :

TH1 : Học sinh TWO làm được 2 trong số 3 bài trong đề thi.

TH2 : Học sinh TWO làm được cả 3 bài trong đề thi.

Cách giải :  Ω = C 2 n 3

TH1 : Học sinh TWO làm được 2 trong số 3 bài trong đề thi. Có  C n 2 . C n 1  cách

TH2 : Học sinh TWO làm được cả 3 bài trong đề thi. Có  C n 3  cách

Gọi A là biến cố học sinh TWO không phải thi lại

Đến đây chọn một giá trị bất kì của n rồi thay vào là nhanh nhất, chọn n =10 , ta tính được  P ( A ) = 1 2

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết