PB

Trong mặt phẳng với hệ toạ độ Oxy cho tam giác ABC. Hai điểm M 4 ; - 1 ,   N 0 ; - 5  lần lượt thuộc AB, AC và phương trình đường phân giác trong góc A là x - 3 y + 5 = 0 , trọng tâm của tam giác ABC là G. Tìm toạ độ các đỉnh của tam giác ABC

A. A 1 ; 2 ,   B - 2 ;   5 ,   C - 1 ; 12  

B.  A 1 ; 2 ,   B - 2 ; 5 ,   C 0 ; 1

C. A 1 ; 0 ,   B - 2 ;   5 ,   C - 1 ; 12

D. A 1 ; 2 ,   B - 1 ; 5 ,   C - 1 ; 12

CT
15 tháng 6 2017 lúc 17:49

Đáp án A

Phân tích.

- Ta thấy A thuộc đường phân giác trong góc A: x - 3 y + 5 = 0 giờ chỉ cần viết được phương trình AC là tìm được A.

- Trên AC đã có một điểm N, cần tìm thêm một điểm nữa. Chú ý khi lấy M’ đối xứng với M qua phân giác trong ta có M’ thuộc cạnh AC.

- Tìm M’ viết được phương trình AC t đó suy ra A. Có A, M viết được phương trình AB.

- Gọi B, C và tham số hóa dựa vào B thuộc AB, C thuộc AC. Áp dụng công thức trọng tâm sẽ tìm ra được tọa độ B, C.

Hướng dẫn giải.

Gọi M ' ∈   A C  là điểm đối xứng của M qua phân giác trong góc A, gọi I là giao điểm của MM' với phân giác trong góc A → I là trung điểm MM’.

Phương trình MM’ là:  3 x + y - 11 = 0

Toạ độ điểm I là nghiệm của hệ:

M’ đối xứng với M qua  

Đường thẳng AC qua N M’ nên có phương trình:

Tọa độ A là nghiệm của hệ: 

 

Đường thẳng AB đi qua A, M nên có phương trình:

x + y - 3 = 0

Gọi 

Do G là trọng tâm tam giác ABC nên ta có:

 

Vậy tọa độ các đỉnh của tam giác ABC là:

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
MT
Xem chi tiết
MT
Xem chi tiết
PB
Xem chi tiết
HK
Xem chi tiết