Trong mặt phẳng tọa độ xOy cho đường thẳng (d) có phương trình: y = 2mx + 5 và parabol (P): y = x2. a. Tìm m để đường thẳng (d) đi qua điểm A(1; 3). b. Chứng tỏ rằng đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt với mọi m. c. Gọi lần lượt là hoành độ giao điểm của (d) và (P). Tìm m sao cho: X1 mũ hai + x2 mũ hai =4
Trong mặt phẳng toạ độ Oxy , cho parabol (P): y= x2 và đường thẳng (d):y= (2m-3)x-m2+3m. a) Chứng minh đường thẳng(d) luôn cắt (P)tại hai điểm phân biệt có hoành độ là x1,x2. b) Tìm tất cả các giá trị nguyên của m để trị tuyệt đối x1+ trị tuyệt đối x2 = 3
Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình y = - x 2 2 . Gọi (d) là đường thẳng đi qua I (0; −2) và có hệ số góc k. Đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt A, B. Gọi H, K theo thứ tự là hình chiếu vuông góc của A, B trên trục hoành. Khi đó tam giác IHK là tam giác?
A. Vuông tại H
B. Vuông tại K
C. Vuông tại I
D. Đều
Trong mặt phẳng Oxy, cho đường thẳng (d) có phương trình \(y=mx-2\)và parabol (P) có phương trình \(y=\frac{-x^2}{4}\). Chứng minh rằng với mọi giá trị của m đường thẳng (d) luôn cắt parabol (P) tại hai điểm A, B. Tìm các giá trị của m để đoạn AB có độ dài nhỏ nhất.
Trên mặt phẳng tọa độ Oxy cho parabol (P): y=x2 và đường thẳng (d): y=2mx+1 (m là tham số)
1) Chứng minh rằng với mọi m thì đường thẳng (d) và parabol (P) cắt nhau tại 2 điểm phân biệt.
2) Gọi giao điểm của đường thẳng (d) và parabol (P) là A và B. Chứng minh tam giác OAB vuông.
Trong mặt phẳng tọa độ Oxy, cho Parabol (P): y=x2 và đường thẳng (d): y=mx+5.
CMR:Với mọi giá trị của tham số m, đường thẳng (d) luôn cắt (P) tại 2 điểm phân biệt có hoành độ x1,x2.Tìm m để x12-9-mx2
Trong mặt phẳng Oxy cho đường thẳng (d): y = kx + 1 2 và parabol (P): y = 1 2 x 2 . Giả sử đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt A, B. Tọa độ trung điểm M của đoạn thẳng AB luôn thỏa mãn phương trình nào dưới đây?
A. y = x 2 + 1 2
B. y = x 2
C. y = x + 1 2
D. y = 1 2 x
Cho hàm số y= - x 2 (P) và đường thẳng (d): y = 2mx - 5
b) Chứng tỏ rằng trên mặt phẳng Oxy đường thẳng (d) và parabol (P) luôn cắt nhau tại hai điểm phân biệt. Tìm tọa độ hai giao khi m = 2.
Trong mặt phẳng tọa độ Oxy cho parabol (P):y=x² 1.Viết phương trình đường thẳng (d) đi qua điểm M(0;m-1) và có hệ số góc bằng 3. 2.Tìm các giá trị của m để (P) và (d) cắt nhau tại hai điểm phân biệt 3.Khi m=3, tìm tọa độ giao điểm của (d) và (P).Vẽ (d) và (P) lên cùng hệ trục tọa độ.