PB

Trong mặt phẳng tọa độ Oxy, trên các tia Ox và Oy lần lượt lấy các điểm A và B thay đổi sao cho đường thẳng AB luôn tiếp xúc với đường tròn tâm O bán kính 1. Xác định tọa độ của A và B để đoạn AB có độ dài nhỏ nhất.

CT
27 tháng 2 2019 lúc 4:08

Giải bài 6 trang 79 SGK Đại Số 10 | Giải toán lớp 10

Gọi tiếp điểm của AB và đường tròn tâm O, bán kính 1 là M, ta có: OM ⊥ AB.

ΔOAB vuông tại O, có OM là đường cao nên MA.MB = MO2 = 1 (hằng số)

Áp dụng bất đẳng thức Cô-si ta có:

MA + MB ≥ 2√MA.MB = 2. √1 = 2

Dấu « = » xảy ra khi MA = MB = 1.

Khi đó OA = √(MA2 + MO2) = √2 ; OB = √(OM2 + MB2) = √2.

Mà A, B nằm trên tia Ox và Oy nên A(√2; 0); B(0; √2)

Vậy tọa độ là A(√2, 0) và B(0, √2).

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
PB
Xem chi tiết
VH
Xem chi tiết
NN
Xem chi tiết
NN
Xem chi tiết
ND
Xem chi tiết
ND
Xem chi tiết
NA
Xem chi tiết
NT
Xem chi tiết