Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): ( x + 1 ) 2 + ( y - 3 ) 2 = 4 . Phép tịnh tiến theo vectơ v → = 3 ; 2 biến đường tròn (C) thành đường tròn có phương trình nào dưới đây
A. ( x + 2 ) 2 + ( y + 5 ) 2 = 4
B. ( x - 1 ) 2 + ( y + 3 ) 2 = 4
C. ( x + 4 ) 2 + ( y - 1 ) 2 = 4
D. ( x - 2 ) 2 + ( y - 5 ) 2 = 4
Trong mặt phẳng tọa độ Oxy, cho đường tròn ( C ) : ( x - 3 ) 2 + ( y - 1 ) 2 = 10 . Phương trình tiếp tuyến của (C) tại A(4;4) là
A. x - 3 y + 5 = 0
B. x + 3 y - 4 = 0
C. x - 3 y + 16 = 0
D. x + 3 y - 16 = 0
Trong mặt phẳng tọa độ Oxy, cho hai đường tròn (C'): x 2 + y 2 + 2 ( m - 2 ) y - 6 x + 12 + m 2 = 0 và (C): ( x + m ) 2 + ( y - 2 ) 2 = 5 . Vecto v → nào dưới đây là vecto của phép tính tịnh tiến biến (C) thành (C')
A. v → = (2;1)
B. v → = (-2;1)
C. v → = (-1;2)
D. v → = (2;-1)
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu ( S ) : ( x - 1 ) 2 + ( y + 1 ) 2 + z 2 = 11 và hai đường thẳng d 1 : x - 5 1 = y + 1 1 = z - 1 2 , d 2 : x + 1 1 = y 2 = z 1 . Phương trình tất cả các mặt phẳng tiếp xúc với mặt cầu ( S ) đồng thời song song với hai đường thẳng d 1 , d 2
A. 3 x - y - z - 7 = 0
B. 3 x - y - z - 7 = 0 v à 3 x - y - z - 15 = 0
C. 3 x - y - z + 7 = 0
D. 3 x - y - z - 15 = 0
Trong mặt phẳng Oxy cho đường tròn (C) có phương trình x − 1 2 + y − 1 2 = 4. Phép vị tự tâm O (với O là gốc tọa độ) tỉ số k = 2 biến (C) thành đường tròn nào trong các đường tròn có phương trình sau?
A. x − 1 2 + y − 1 2 = 8.
B. x − 2 2 + y − 2 2 = 8.
C. x + 2 2 + y + 2 2 = 16.
D. x − 2 2 + y − 2 2 = 16.
Trong không gian với hệ trục tọa độ Oxyz cho đường thẳng d : x - 2 2 = y - 1 = z 4 và mặt cầu (S): (x-1)2+ (y-2)2 + (z-1)2=2. Hai mặt phẳng (P), (Q) chứa d và tiếp xúc với (S). Gọi M và N là tiếp điểm. Độ dài đoạn thẳng MN bằng
Trong mặt phẳng tọa độ Oxy cho điểm A(9,0) và đường tròn (C): ( x - 2 ) 2 + ( y - 1 ) 2 = 25 . Gọi ∆1;∆2 là hai tiếp tuyến của (C) đi qua A. Tính tổng khoảng cách từ O đến hai đường thẳng ∆1;∆2.
A. 36/5.
B. 37/5.
C. 73/5.
D. 63/5.
Trong mặt phẳng tọa độ Oxy cho đường thẳng d có phương trình y = 1 3 x + 2 .Viết phương trình đường thẳng Δ là ảnh của đường thẳng d qua phép đối xứng trục là đường thẳng y=x.
A. y = 3 x − 6
B. y = 3 x + 6
C. y = − 3 x + 6
D. y = − 3 x − 6
Trong không gian với hệ tọa độ Oxyz, cho điểm A(2;1;3) và đường thẳng d có phương trình x - 1 2 = y - 2 - 1 = z z . Mặt phẳng chứa A và d. Viết phương trình mặt cầu tâm O tiếp xúc với mặt phẳng (P).
A. x 2 + y 2 + z 2 = 12 5 .
B. x 2 + y 2 + z 2 = 3 .
C. x 2 + y 2 + z 2 = 6 .
D. x 2 + y 2 + z 2 = 24 5 .