Đường thẳng đoạn chắn qua M (3,1) có pt và a+3b min
a+3b=12, b= a/3
a=6, b=2
Đường thẳng d cắt trục hoành tai điểm A(6,0), B(0,2)
??
Giả sử \(A\left(\frac{1}{a},0\right),B\left(0,\frac{1}{b}\right)\). Phương trình đường thẳng d cần tìm có dạng: \(ax+by=1\)
Vì \(M\left(3,1\right)\in d\)nên \(3a+b=1\)
Ta có : \(OA+3OB=\left|\frac{1}{a}\right|+\left|\frac{3}{b}\right|\ge\left|\frac{1}{a}+\frac{3}{b}\right|=\left|\frac{3a+b}{a}+\frac{3\left(3a+b\right)}{b}\right|=\left|6+\frac{b}{a}+\frac{9a}{b}\right|\)
Áp dụng bất đẳng thức AM-GM ta có : \(\frac{b}{a}+\frac{9a}{b}\ge2\sqrt{\frac{9ab}{ab}}=6\)
\(\Rightarrow OA+3OB\ge\left|6+6\right|=12\)
Dấu "=" xảy ra khi: \(a=\frac{1}{6},b=\frac{1}{2}\)
Vậy phương trình cần tìm là \(\frac{1}{6}x+\frac{1}{2}y=0\Leftrightarrow x+3y=6\)
Thiếu chút:))) Sorry nhaaa
Học tốt!!!!!