Trong mặt phẳng Oxy, gọi các điểm M, N lần lượt là điểm biểu diễn số phức z 1 = 2 - i , z 2 = 1 + 4 i Gọi G là trọng tâm của tam giác OMN, với O là gốc tọa độ. Hỏi G là điểm biểu diễn của số phức nào sau đây?
Cho số phức z = 1 + 3 i . Gọi A,B lần lượt là điểm biểu diễn của các số phức (1+i)z và (3-i)z trong mặt phẳng tọa độ Oxy. Tính độ dài đoạn AB.
Cho các số phức z 1 = 1 ; z 2 = 2 + 2 i ; z 3 = - 1 + 3 i được biểu diễn trong mặt phẳng tọa độ Oxy là M,N,P, các điểm này lần lượt là trung điểm của ba cạnh tam giác EFH. Tọa độ trọng tâm G của tam giác EFH là:
A. (2;3)
B. (3;2)
C. 2 3 ; 2 3
D. 2 3 ; 5 3
Cho các số phức z1=3-2i, z2=1+4i và z3=-1+i có biểu diễn hình học trong mặt phẳng tọa độ Oxy lần lượt là các điểm A,B,C. Diện tích tam giác ABC bằng:
A..
B.12.
C..
D.9.
Cho i là đơn vị ảo. Cho m ∈ R . Trên mặt phẳng tọa độ Oxy, điểm biểu diễn hình học số phức z = m i có tọa độ là
Cho i là đơn vị ảo. Cho m ∈ ℝ . Trên mặt phẳng tọa độ Oxy, điểm biểu diễn hình học số phức z = mi có tọa độ là
Trong mặt phẳng Oxy, M,N,P là tọa độ điểm biểu diễn của số phức z 1 = - 5 + 6 i ; z 2 = - 4 - i ; z 3 = 4 + 3 i
Tọa độ trực tâm H của tam giác MNP là:
A. (3;1)
B. (-1;3)
C. (2;-3)
D. (-3;2)
Trong mặt phẳng tọa độ cho các điểm A, B, C lần lượt là điểm biểu diễn các số phức - 1 + 3 i 1 - i , 5 i 1 + 2 i , 3 i . Khi đó tam giác ABC
A. Vuông tại A.
B. Vuông cân tại C
C. Tam giác đều
D. Vuông tại C.
Trong mặt phẳng phức cho các điểm A, B, C theo thứ tự biểu diễn các số phức z 1 = - i ; z 2 = 2 + i ; z 3 = - 1 + i . Tìm số phức z biểu diễn điểm D sao cho tứ giác ABCD là hình bình hành