\(BM=\frac{3\sqrt{2}}{2};AM=\sqrt{AB^2+BM^2}=\frac{3\sqrt{10}}{2}\)
Kẻ \(BH\perp AM\Rightarrow\) đường thẳng BH có 1 vtpt là \(\overrightarrow{n_{BH}}=\left(1;-3\right)\)
\(\Rightarrow\) phương trình BH:
\(1\left(x-4\right)-3\left(y-1\right)=0\Leftrightarrow x-3y-1=0\)
\(\Rightarrow\) tọa độ H là nghiệm: \(\left\{{}\begin{matrix}3x+y-7=0\\x-3y-1=0\end{matrix}\right.\) \(\Rightarrow H\left(\frac{11}{5};\frac{2}{5}\right)\)
Áp dụng hệ thức lượng trong tam giác vuông ta có:
\(\frac{MH}{AM}=\left(\frac{BM}{AM}\right)^2=\frac{1}{5}\Rightarrow4.\overrightarrow{MH}=\overrightarrow{HA}\)
Gọi \(M\left(a;7-3a\right)\Rightarrow\overrightarrow{MH}=\left(\frac{11}{5}-a;3a-\frac{33}{5}\right)\)
\(\Rightarrow A\left(11-4a;12a-26\right)\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{BM}=\left(a-4;6-3a\right)\\\overrightarrow{BA}=\left(7-4a;12a-27\right)\end{matrix}\right.\)
\(BM\perp AB\Rightarrow\overrightarrow{BM}.\overrightarrow{BA}=0\Rightarrow\left(a-4\right)\left(7-4a\right)+\left(6-3a\right)\left(12a-27\right)=0\)
\(\Leftrightarrow-40a^2+176a-190=0\Rightarrow\left[{}\begin{matrix}a=\frac{5}{2}\\a=\frac{19}{10}\end{matrix}\right.\)
- Với \(a=\frac{5}{2}\Rightarrow\left\{{}\begin{matrix}A\left(1;4\right)\\M\left(\frac{5}{2};\frac{-1}{2}\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_C=2x_M-x_B=1\\y_C=2y_M-y_B=-2\end{matrix}\right.\) \(\Rightarrow C\left(1;-2\right)\)
\(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow D\left(-2;1\right)\)
- Với \(a=\frac{19}{10}\) \(\Rightarrow\left\{{}\begin{matrix}A\left(\frac{17}{5};\frac{-16}{5}\right)\\M\left(\frac{19}{10};\frac{13}{10}\right)\end{matrix}\right.\)
Tính tọa độ B, C tương tự như trên
//Đề bài chắc chắn bạn chép sai, M không thể có hoành độ âm (cả 2 giá trị hoành độ nhận được đều dương)