Đường thẳng đó có phương trình trên đoạn chắn là
\(\dfrac{x}{a}+\dfrac{y}{b}=1\) (d)
Do d đi qua A(1; 2) ⇒ \(\dfrac{1}{a}+\dfrac{2}{b}=1\) (1)
M,N lần lượt là giao điểm của d vs Ox, Oy
⇒ \(\left\{{}\begin{matrix}OM=\left|a\right|\\ON=\left|b\right|\end{matrix}\right.\); Kết hợp giả thiết
⇒ |b| = 2|a|
⇒ \(\left[{}\begin{matrix}a=\dfrac{b}{2}\\a=\dfrac{-b}{2}\end{matrix}\right.\)
Nếu a = \(\dfrac{b}{2}\), kết hợp (1) ⇒ \(\left\{{}\begin{matrix}a=2\\b=4\end{matrix}\right.\)
Phương trình trên đoạn chắn là \(\dfrac{x}{2}+\dfrac{y}{4}=1\)
⇒ Phương trình tổng quát : 2x + y - 4 = 0
Nếu a = \(-\dfrac{b}{2}\) kết hợp (1) không có a,b
Vậy chỉ có 1 đường thẳng thỏa mãn đề bài
Đường thẳng đó có phương trình là
2x + y - 4 = 0