Bài 1. PHƯƠNG TRÌNH ĐƯỜNG THẲNG

DK

Trong mặt phẳng Oxy cho điểm A (1,2) Viết phương trình đường thẳng đi qua  cắt hai trục Ox,Oy lần lượt tại M và N( khác O) thỏa mãn ON = 2OM

NC
2 tháng 3 2021 lúc 15:43

Đường thẳng đó có phương trình trên đoạn chắn là

\(\dfrac{x}{a}+\dfrac{y}{b}=1\) (d)

Do d đi qua A(1; 2) ⇒ \(\dfrac{1}{a}+\dfrac{2}{b}=1\) (1)

M,N lần lượt là giao điểm của d vs Ox, Oy

⇒ \(\left\{{}\begin{matrix}OM=\left|a\right|\\ON=\left|b\right|\end{matrix}\right.\); Kết hợp giả thiết 

⇒ |b| = 2|a|

⇒ \(\left[{}\begin{matrix}a=\dfrac{b}{2}\\a=\dfrac{-b}{2}\end{matrix}\right.\)

Nếu a = \(\dfrac{b}{2}\), kết hợp (1) ⇒ \(\left\{{}\begin{matrix}a=2\\b=4\end{matrix}\right.\)

Phương trình trên đoạn chắn là \(\dfrac{x}{2}+\dfrac{y}{4}=1\)

⇒ Phương trình tổng quát : 2x + y - 4 = 0

Nếu a = \(-\dfrac{b}{2}\) kết hợp (1) không có a,b

Vậy chỉ có 1 đường thẳng thỏa mãn đề bài

Đường thẳng đó có phương trình là

2x + y - 4 = 0

 

Bình luận (0)