Trong không gian Oxyz, cho mặt cầu (S)có phương trình ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 25 . Tọa độ tâm I và bán kính R của (S) là
A. I(1;2;3) và R=5.
B. I(-1;-2;-3) và R=5.
C. I(1;2;3) và R=25.
D. I(-1;-2;-3) và R=25
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu ( S ) : ( x - 5 ) 2 + ( y - 1 ) 2 + ( z + 2 ) 2 = 9 . Bán kính R của mặt cầu (S) là
A. 3
B. 6
C. 9
D. 18
Trong không gian Oxyz, cho mặt cầu S : ( x − 4 ) 2 + ( y + 5 ) 2 + ( z − 3 ) 2 = 4 . Tìm tọa độ tâm I và bán kính R của mặt cầu.
A. I − 4 ; 5 ; − 3 v à R = 2
B. I 4 ; − 5 ; 3 v à R = 2
C. I − 4 ; 5 ; − 3 v à R = 4
D. I 4 ; − 5 ; 3 v à R = 4
Trong không gian với hệ trục tọa độ Oxyz, cho điểm I(2;-2;0). Viết phương trình mặt cầu tâm I bán kính R=4
A. x + 2 2 + y - 2 2 + z 2 = 16
B. x - 2 2 + y + 2 2 + z 2 = 16
C. x - 2 2 + y - 2 2 + z 2 = 4
D. x + 2 2 + y - 2 2 + z 2 = 4
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): ( x - 1 ) 2 + ( y + 2 ) 2 + z 2 = 9 Tâm I và bán kính R của (S) lần lượt là
A. I(1;-2;0);R=3
B. I(-1;2;0);R=3
C. I(1;-2;0);R=9
D. I(-1;2;0);R=9
Trong không gian hệ tọa độ Oxyz cho 2 đường thẳng ∆ 1 : x = t 1 y - t 1 t 1 ∈ ℝ z = 0 và ∆ 2 : x = 5 - 2 t 2 y = - 2 t 2 ∈ ℝ z = t 2 . Lập phương trình mặt cầu biết tâm I mặt cầu thuộc ∆ 1 , khoảng cách từ I đến ∆ 2 bằng 3 đồng thời mặt phẳng (α):2x+2y-7z=0 cắt mặt cầu theo giao tuyến là một đường tròn có bán kính r = 5 .
A. x + 2 2 + y 2 + z - 1 2 = 25 , x - 5 3 2 + y - 5 3 2 + z 2 = 25
B. x - 1 2 + y 2 + z - 2 2 = 25 , x - 5 3 2 + y + 5 3 2 + z 2 = 25
C. x + 1 2 + y 2 + z + 2 2 = 25 , x 2 + y + 5 3 2 + z - 5 3 2 = 25
D. x 2 + y 2 + z 2 = 25 , x + 5 3 2 + y - 5 3 2 + z 2 = 25
Trong không gian với hệ tọa độ O x y z , A − 3 ; 4 ; 2 , B − 5 ; 6 ; 2 , C − 10 ; 17 ; − 7 . Viết phương trình mặt cầu tâm C bán kính AB
A. x + 10 2 + y − 17 2 + z − 7 2 = 8
B. x + 10 2 + y − 17 2 + z + 7 2 = 8
C. x − 10 2 + y − 17 2 + z + 7 2 = 8
D. x + 10 2 + y + 17 2 + z + 7 2 = 8
Trong không gian với hệ trục toạ độ (Oxyz), cho mặt cầu ( S ) : ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 9 điểm A(0;0;2). Phương trình mặt phẳng (P) đi qua A và cắt mặt cầu (S) theo thiết diện là hình tròn (C) có diện tích nhỏ nhất là
A. ( P ) : x + 2 y + 3 z + 6 = 0
B. ( P ) : x + 2 y + z - 2 = 0
C. ( P ) : x - 2 y + z - 6 = 0
D. ( P ) : 3 x + 2 y + 2 z - 4 = 0
Trong không gian tọa độ Oxyz, cho mặt cầu (S) có phương trình (x-2)2 + (y+1)2 + (z-3)2 = 20. Mặt phẳng có phương trình x-2y+2z-1=0 và đường thẳng ∆ có phương trình x 1 = y + 2 2 = z + 4 - 30 . Viết phương trình đường thẳng ∆ ' nằm trong mặt phẳng α vuông góc với ∆ đồng thời cắt (S) theo một dây cung có độ dài lớn nhất.