Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;2;1). Mặt phẳng (P) thay đổi đi qua M cắt các tia Ox, Oy, Oz lần lượt tại A, B, C khác gốc tọa độ. Tính giá trị nhỏ nhất của thể tích khối tứ diện OABC.
A. 18
B. 9
C. 6
D. 54
Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;2;1). Mặt phẳng (P) thay đổi đi qua M lần lượt cắt các tia Ox,Oy,Oz tại A,B,C khác O. Tính giá trị nhỏ nhất của thể tích khối tứ diện OABC.
A. 54.
B. 6.
C. 9.
D. 18.
Trong không gian Oxyz, cho điểm M(1;1;2). Mặt phẳng (P) qua M cắt các trục tọa độ Ox, Oy, Oz lần lượt tại điểm A, B, C. Gọi V O . A B C là thể tích của tứ diện OABC . Khi (P) hay đổi tìm giá trị nhỏ nhất của V O . A B C
A. min V O . A B C = 9 2
B. min V O . A B C = 18
C. min V O . A B C = 9
D. min V O . A B C = 32 3
Trong không gian với hệ tọa độ Oxyz, cho điểm M(2;1;1). Viết phương trình mặt phẳng (P) đi qua M và cắt ba tia Ox, Oy, Oz lần lượt tại các điểm A, B, C khác gốc O sao cho thể tích khối tứ diện OABC nhỏ nhất.
A. 2x-y+2z-3=0
B. 4x-y-z-6=0
C. 2x+y+2z-6=0
D. x+2y+2z-6=0
Trong không gian với hệ tọa độ Oxyz, cho điểm H 1 ; 2 ; − 2 . Mặt phẳng α đi qua H và cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho H là trực tâm của Δ A B C . Tính diện tích mặt cầu ngoại tiếp tứ diện OABC.
A. 81 π 2
B. 243 π 2
C. 81 π
D. 243 π
Trong không gian với hệ tọa độ Oxyz, một mặt phẳng đi qua điểm M 1 ; 3 ; 9 và cắt các tia Ox, Oy, Oz lần lượt tại A a ; 0 ; 0 , B 0 ; b ; 0 , C 0 ; 0 ; c với a, b, c là các số thực dương. Tìm giá trị của biểu thức P = a + b + c để thể tích tứ diện OABC đạt giá trị nhỏ nhất.
A. P = 44
B. P = 39
C. P = 27
D. P = 16
Trong không gian với hệ tọa độ Oxyz, một mặt phẳng đi qua điểm M 1 ; 3 ; 9 và cắt các tia Ox, Oy, Oz lần lượt tại A a ; 0 ; 0 , B 0 ; b ; 0 , C 0 ; 0 ; c với a, b, c là các số thực dương. Tìm giá trị của biểu thức P = a + b + c để thể tích tứ diện OABC đạt giá trị nhỏ nhất.
A. P = 44
B. P = 39
C. P = 27
D. P = 16
Trong không gian với hệ tọa độ Oxyz, một mặt phẳng đi qua điểm M 1 ; 3 ; 9 và cắt các tia Ox, Oy, Oz lần lượt tại A a ; 0 ; 0 , B 0 ; b ; 0 , C 0 ; 0 ; c với a, b, c là các số thực dương. Tìm giá trị của biểu thức P = a + b + c để thể tích tứ diện OABC đạt giá trị nhỏ nhất.
A. 4 x - 7 y + 2 z - 12 = 0
B. 4 x - 7 y - 2 z + 5 = 0
C. 4 x + 7 y + 2 z - 13 = 0
D. 2 x + 7 y + 4 z - 12 = 0
Trong không gian với hệ tọa độ Oxyz, cho điểm M(2;-1;0). Hỏi có bao nhiêu mặt phẳng (P) đi qua M và cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho O A = 2 O B = 3 O C ≠ 0 ?
A. 4.
B. 3.
C. 2.
D. 8.