Trong không gian với hệ toạ độ Oxyz, cho ba mặt phẳng ( α ) :x+2y-z-1=0, ( β ) :2x+y-z-3=0, ( λ ) :ax+by+z+2=0 cùng đi qua một đường thẳng. Giá trị của biểu thức a+b bằng
A. 3.
B. 0.
C. -3
D. 6.
Trong không gian với hệ toạ độ Oxyz, cho ba mặt phẳng ( α ) : x + 2 y - z - 1 = 0 , ( β ) : 2 x + y - z - 3 = 0 cùng đi qua một đường thẳng. Giá trị của biểu thức a + b bằng
A. 3.
B. 0.
C. - 3
D. 6.
Trong không gian với hệ toạ độ Oxyz, cho điểm A(1;-2;3) và hai mặt phẳng (P):x+y+z+1=0;(Q):x-y+z-2=0. Phương trình nào dưới đây là phương trình đường thẳng qua A, song song với (P) và (Q).
A. x = 1 + 2 t y = - 2 z = 3 + 2 t
B. x = - 1 + t y = 2 z = - 3 - t
C. x = 1 y = - 2 z = 3 - 2 t
D. x = 1 + t y = - 2 z = 3 - t
Trong không gian với hệ toạ độ Oxyz, đường thẳng vuông góc với mặt phẳng ( α ) :x+y-z+3=0 và cắt hai đường thẳng d 1 : x + 1 2 = y + 1 2 = z - 2 - 1 ; d 2 : x - 1 - 1 = y - 2 1 = z - 3 3 là
A. x + 1 - 1 = y + 1 - 1 = z - 2 1
B. x - 1 1 = y 1 = z - 1 - 1
C. x - 1 1 = y - 2 1 = z - 3 - 1
D. x - 1 1 = y - 1 = z - 1 1
Trong không gian với hệ toạ độ Oxyz, cho đường thẳng ∆ là giao tuyến của hai mặt phẳng P : z - 1 = 0 và Q : x + y + z - 3 = 0 . Gọi d là đường thẳng nằm trong mặt phẳng P , cắt đường thẳng x - 1 1 = y - 2 - 1 = z - 3 - 1 và vuông góc với đường thẳng . Phương trình của đường thẳng d là
A. x = 3 + t y = t z = 1 + t
B. x = 3 - t y = t z = 1
C. x = 3 + t y = t z = 1
D. x = 3 + t y = - t z = 1 + t
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x + y + z - 3 = 0 và cho điểm A(1; 2; 3). Tìm tọa độ của điểm B đối xứng với A qua (P)
A. B(-1; 0; 1)
B. B(1; -1; 0)
C. B(-1; -1; -1)
D. B(1; -2; 1)
Trong không gian với hệ toạ độ oxyz, cho A(1 ;-2 ;1),B(-2 ;2 ;1),C(1,-2,2) Đường phân giác trong góc A của tam giác ABC cắt mặt phẳng (P) : x+y+z-6=0 tại điểm nào trong các điểm sau đây
A. (-2 ;3 ;5)
B. (-2 ;2 ;6)
C. (1 ;-2 ;7)
D. (4 ;-6 ;8)
Trong hệ tục toạ độ không gian Oxyz, cho A(1;0;0), B(0;b;0), C(0;0;c), biết b,c>0, phương trình mặt phẳng (P): y-z+1= 0. Tính M=b+c biết (ABC) ⊥ (P),d(O;(ABC))=1/3
A. 2
B. 1/2
C. 5/2
D. 1
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):x–y+z -1= 0 và (Q):2x+y+1= 0. Viết phương trình mặt phẳng đi qua A(1;-1;-2) vuông góc với hai mặt phẳng (P) và (Q).
A. x+2y+3z+7=0.
B. x-2y+3z+3=0.
C. x+2y-3z–5=0.
D. x–2y–3z-9=0.
Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng ( α ) :x+y-z+1=0 và đường thẳng d: x - 1 1 = y - 2 2 = z - 3 3 . Đường thẳng Δ qua điểm A(1;0;2) và có véctơ chỉ phương u → (a;b;1), cách đường thẳng d một khoảng bằng
A. 3 3
B. 3
C. 2 2
D. 2