Trong không gian với hệ toạ độ Oxyz, đường thẳng nào dưới đây song song với mặt phẳng ( α ) :x+y+z-3=0.
A. x = 1 + 2 t y = 1 - t z = 1 - t
B. x = 2 + t y = - 1 + t z = - 1 + t
C. x = - 1 + 2 t y = - 1 - t z = - 1 - t
D. x = 3 + t y = - 2 t z = t
Trong không gian với hệ toạ độ Oxyz, cho điểm A(1;-2;3) và hai mặt phẳng (P):x+y+z+1=0;(Q):x-y+z-2=0. Phương trình nào dưới đây là phương trình đường thẳng qua A, song song với (P) và (Q).
A. x = 1 + 2 t y = - 2 z = 3 + 2 t
B. x = - 1 + t y = 2 z = - 3 - t
C. x = 1 y = - 2 z = 3 - 2 t
D. x = 1 + t y = - 2 z = 3 - t
Trong không gian với hệ toạ độ Oxyz, đường thẳng vuông góc với mặt phẳng ( α ) :x+y-z+3=0 và cắt hai đường thẳng d 1 : x + 1 2 = y + 1 2 = z - 2 - 1 ; d 2 : x - 1 - 1 = y - 2 1 = z - 3 3 là
A. x + 1 - 1 = y + 1 - 1 = z - 2 1
B. x - 1 1 = y 1 = z - 1 - 1
C. x - 1 1 = y - 2 1 = z - 3 - 1
D. x - 1 1 = y - 1 = z - 1 1
Trong không gian Oxyz, cho mặt phẳng ( α ) : 2 x + y - 2 z - 2 = 0 , đường thẳng d : x + 1 1 = y + 2 2 = z + 3 2 và điểm A(1/2; 1; 1). Gọi ∆ là đường thẳng nằm trong mặt phẳng ( α ) , song song với d đồng thời cách d một khoảng bằng 3. Đường thẳng ∆ cắt mặt phẳng Oxy tại điểm B. Độ dài đoạn thẳng AB bằng
A. 7 / 3
B. 7 / 2
C. 21 / 2
D. 3 / 2
Trong không gian với hệ toạ độ Oxyz, cho ba mặt phẳng ( α ) :x+2y-z-1=0, ( β ) :2x+y-z-3=0, ( λ ) :ax+by+z+2=0 cùng đi qua một đường thẳng. Giá trị của biểu thức a+b bằng
A. 3.
B. 0.
C. -3
D. 6.
Trong không gian với hệ toạ độ Oxyz, cho đường thẳng ∆ là giao tuyến của hai mặt phẳng P : z - 1 = 0 và Q : x + y + z - 3 = 0 . Gọi d là đường thẳng nằm trong mặt phẳng P , cắt đường thẳng x - 1 1 = y - 2 - 1 = z - 3 - 1 và vuông góc với đường thẳng . Phương trình của đường thẳng d là
A. x = 3 + t y = t z = 1 + t
B. x = 3 - t y = t z = 1
C. x = 3 + t y = t z = 1
D. x = 3 + t y = - t z = 1 + t
Trong không gian với hệ toạ độ Oxyz, cho ba mặt phẳng ( α ) : x + 2 y - z - 1 = 0 , ( β ) : 2 x + y - z - 3 = 0 cùng đi qua một đường thẳng. Giá trị của biểu thức a + b bằng
A. 3.
B. 0.
C. - 3
D. 6.
Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng ( α ) :x+y-z+1=0 và đường thẳng d: x - 1 1 = y - 2 2 = z - 3 3 . Đường thẳng Δ qua điểm A(1;0;2) và có véctơ chỉ phương u → (a;b;1), cách đường thẳng d một khoảng bằng
A. 3 3
B. 3
C. 2 2
D. 2
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x - y - z - 1 = 0 và cho đường thẳng d : x + 1 2 = y - 1 1 = z - 2 3 , cho A(1; 1; -2). Viết phương trình đường thẳng đi qua A, song song với (P) và vuông góc với d
A. x - 1 2 = y - 1 5 = z + 2 3
B. x - 1 2 = y - 1 - 5 = z 2
C. x - 1 2 = y - 1 - 5 = z + 2 - 3
D. x - 1 2 = y - 1 5 = z + 2 - 3