PB

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : x + y + z - 1 = 0  và hai điểm A ( 1;-3;0 ), B ( 5;-1;-2 ). Điểm m ( a;b;c ) trên mặt phẳng (P) sao cho M A - M B  đạt giá trị lớn nhất. Tính tổng a + b + c

A. 1

B. 11

C. 5

D. 6

CT
29 tháng 3 2018 lúc 7:38

Kiểm tra thấy AB nằm khác phía so với mặt phẳng (P)

Ta tìm được điểm đối xứng với B qua (P) là B ' ( -1;-3;4 ) 

Lại có  M A - M B = M A - M B ' ≤ A B ' = c o n s t .

Vậy  M A - M B  đạt giá trị lớn nhất khi M, A, B’ thẳng hàng hay M là giao điểm của đường thẳng AB’ với mặt phẳng (P).

Đường thẳng AB’ có phương trình tham số là x = 1 + t y = - 3 z = - 2 y .

Tọa độ điểm M ứng với tham số t là nghiệm của phương trình

1 + t + - 3 + - 2 t - 1 = 0 ⇔ t = - 3 ⇒ M - 2 ; - 3 ; 6

Suy ra a = -2; b = -3; c = 6 

Vậy a + b + c = 1

Đáp án A

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết