Đáp án D
Vectơ chỉ phương của đường thẳng Δ vuông góc với mặt phẳng (P) là một vectơ pháp tuyến của mặt phẳng (P).
Đáp án D
Vectơ chỉ phương của đường thẳng Δ vuông góc với mặt phẳng (P) là một vectơ pháp tuyến của mặt phẳng (P).
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : 2 x - 3 y + z + 2 = 0 . Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng ∆ vuông góc với mặt phẳng P ?
A. u → = 2 ; 1 ; - 3
B u → = 2 ; - 3 ; 1
C. u → = 1 ; 1 ; 1
D. u → = 3 ; 2 ; 0
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : 2 x − 2 y + z = 0 và đường thẳng d : x + 1 1 = y 2 = z − 1 . Gọi là một đường thẳng chứa trong (P) cắt và vuông góc với d. Vectơ u → = a ; 1 ; b là một vectơ chỉ phương của Δ . Tính tổng S = a + b
A. S = 1
B. S = 0
C. S = 2
D. S = 4
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng và đường thẳng d : x + 1 1 = y 2 = z − 1 . Gọi ∆ là một đường thẳng chứa trong (P) cắt và vuông góc với d. Vectơ u → = a ; 1 ; b một vectơ chỉ phương của ∆ . Tính tổng S = a+b
A. S = 1
B. S = 0
C. S = 2
D. S = 4
Trong không gian với hệ tọa độ Oxyz cho mặt phẳng P : x + y - 4 z = 0 đường thẳng d: x - 1 2 = y + 1 - 1 = z - 3 1 và điểm A 1 ; 3 ; 1 thuộc mặt phẳng (P). Gọi ∆ là đường thẳng đi qua A nằm trong mặt phẳng (P) và cách d một khoảng cách lớn nhất. Gọi u → = 1 ; b ; c là một vectơ chỉ phương của đường thẳng ∆ . Tính b + c
A. b + c = - 6 11
B. b + c = 0
C. b + c = 1 4
D. b + c = 4.
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(-1;-2;2), B(-3;-2;0) và mặt phẳng (P):x+3y-z+2=0. Vectơ chỉ phương của đường thẳng d là giao tuyến của mặt phẳng (P) và mặt phẳng trung trực của đoạn AB có tọa độ là
A. u → = 1 ; - 1 ; 0
B. u → = 2 ; 3 ; - 1
C. u → = 1 ; - 2 ; 0
D. u → = 3 ; - 2 ; - 3
Trong không gian với hệ tọa độ Oxyz, gọi d' là hình chiếu vuông góc của đường thẳng d : x + 1 2 = y − 2 3 = z + 3 1 trên mặt phẳng tọa độ Oxy. Vectơ nào dưới đây là một vectơ chỉ phương của d.
A. u → = 2 ; 3 ; 0
B. u → = 2 ; 3 ; 1
C. u → = − 2 ; 3 ; 0
D. u → = 2 ; − 3 ; 0
Trong không gian với hệ tọa độ Oxyz cho đường thẳng d : x + 3 2 = y - 1 1 = z - 1 - 3 . Hình chiếu vuông góc của d trên mặt phẳng (Oxyz) là một đường thẳng có vectơ chỉ phương là
A. u → = 2 ; 1 ; - 3
B. u → = 2 ; 0 ; 0
C. u → = 0 ; 1 ; 3
D. u → = 0 ; 1 ; - 3
Trong không gian Oxyz cho đường thẳng d: x 2 = y 2 = z + 3 - 1 và mặt cầu (S): ( x - 3 ) 2 + ( y - 2 ) 2 + ( z - 5 ) 2 = 36 . Gọi Δ là đường thẳng đi qua A(2;1;3) vuông góc với đường thẳng (d) và cắt (S) tại 2 điểm có khoảng cách lớn nhất. Khi đó đường thẳng Δ có một vectơ chỉ phương là u → ( 1 ; a ; b ) . Tính a + b
A. 4
B. -2
C. - 1 2
D. 5
Trong không gian với hệ tọa độ Oxyz, đường thẳng d đi qua điểm M ( 0;-1;1 ) và có vectơ chỉ phương u → 1 ; 2 ; 0 . Gọi (P) là mặt phẳng chứa đường thẳng d và có vectơ pháp tuyến là n → a ; b ; c với a 2 + b 2 + c 2 > 0 Cho biết kết quả nào sau đây đúng?
A. a = 2b
B. a = -3b
C. a = 3b
D. a = -2b