PB

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu  S : x - 1 2 + y - 2 2 + z - 3 2 = 16  và các điểm A(1;0;2), B(-1;2;2). Gọi (P) là mặt phẳng đi qua hai điểm A, B sao cho thiết diện của mặt phẳng (P) và mặt cầu (S ) có diện tích nhỏ nhất. Khi đó viết phương trình (P):ax + by + cz + 3 = 0. Tính giá trị của T = a + b + c.

A. 3

B. -3

C. 0

D. -2

CT
27 tháng 6 2019 lúc 4:41

Đáp án B

Xét  S : x - 1 2 + y - 2 2 + z - 3 2 = 16 có tâm I(1;2;3) bán kính R = 4 

Gọi O là hình chiếu của I trên mặt phẳng (P). Ta có S m i n ⇔ d I ; P m a x ⇔ I O m a x  

Khi và chỉ khi I O ≡ I H  với H là hình chiếu của I trên AB

⇒ I H →  là vecto pháp tuyến của mặt phẳng (P) mà I A = I B ⇒ H  là trung điểm AB

⇒ H ( 0 ; 1 ; 2 ) ⇒ I H → = ( - 1 ; - 1 ; - 1 ) ⇒ m p P  là -x - y - z + 3 = 0.

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết