PB

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): x 2 + y 2 + z 2 = 3.  Một mặt phẳng α  tiếp xúc với mặt cầu (S) và cắt các tia Ox, Oy, Oz lần lượt tại A, B, C và thỏa mãn O A 2 + O B 2 + O C 2 = 27.  Diện tích của tam giác ABC bằng

A.  3 3 2

B.  9 3 2

C.  3 3

D.  9 3

CT
26 tháng 8 2018 lúc 17:27

Đáp án B.

Mặt cầu S : x 2 + y 2 + z 2 = 3

có tâm O 0 ; 0 ; 0  và bán kính  R = 3

Giả sử A a ; 0 ; 0 , B 0 ; b ; 0 , C 0 ; 0 ; c  với a , b , c > 0   ⇒ Phương trình mặt phẳng α  là: x a + y b + z c − 1 = 0

Để ý rằng O A 2 + O B 2 + O C 2 = 27 ⇔ a 2 + b 2 + c 2 = 27  và vì α  tiếp xúc mặt cầu S :

⇒ d O , α = R = 3 ⇔ 0 a + 0 b + 0 c − 1 1 a 2 + 1 b 2 + 1 c 2 = 3 ⇔ 1 a 2 + 1 b 2 + 1 c 2 = 1 3

Ta luôn có bất đẳng thức a 2 + b 2 + c 2 + 1 a 2 + 1 b 2 + 1 c 2 ≥ 9  với  a , b , c > 0.

Dấu bằng khi  a = b = c = 3

Ta có V O . A B C = O A . O B . O C 6 = a b c 6 = 27 6

hoặc  V O . A B C = d O , α . S A B C 3 ⇔ S A B C = 9 3 2 .

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết