Chương 3: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN.

NQ

Trong không gian với hệ tọa độ Oxyz, cho \(\left(P\right)\) là mặt phẳng chứa \(d:\frac{x-4}{3}=\frac{y}{1}=\frac{z+4}{-4}\) và tiếp xúc với mặt cầu \(\left(S\right):\left(x-3\right)^2+\left(y+3\right)^2+\left(z-1\right)^2=9\) . Khi đó mặt phẳng \(\left(P\right)\) cắt trục Oz tại điểm nào ?

A. \(\left(0;0;2\right)\)

B. \(\left(0;0;-2\right)\)

C. \(\left(0;0;-4\right)\)

D. \(\left(0;0;4\right)\)

NL
4 tháng 4 2019 lúc 16:56

Ta có \(A\left(4;0;-4\right)\)\(B\left(1;-1;0\right)\) thuộc d

Gọi phương trình (P): \(ax+by+cz+4d=0\)

Do (P) chứa d \(\Rightarrow\left\{{}\begin{matrix}4a-4c+4d=0\\a-b+4d=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=c-d\\b=a+4d=c+3d\end{matrix}\right.\)

Phương trình (P) viết lại:

\(\left(c-d\right)x+\left(c+3d\right)y+cz+4d=0\)

Do (P) tiếp xúc (S):

\(d\left(I;\left(P\right)\right)=R\Leftrightarrow\frac{\left|3\left(c-d\right)-3\left(c+3d\right)+c+4d\right|}{\sqrt{\left(c-d\right)^2+\left(c+3d\right)^2+c^2}}=3\)

\(\Leftrightarrow\left|c-8d\right|=3\sqrt{3c^2+4cd+10d^2}\)

\(\Leftrightarrow26c^2+52cd+26d^2=0\) \(\Rightarrow c=-d\)

Giao của (P) và trục Oz (\(x=0;y=0\)):

\(cz+4d=0\Rightarrow z=-\frac{4d}{c}=4\Rightarrow\left(0;0;4\right)\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
PL
Xem chi tiết
NQ
Xem chi tiết
TD
Xem chi tiết
NH
Xem chi tiết
TD
Xem chi tiết
NQ
Xem chi tiết
NQ
Xem chi tiết
H24
Xem chi tiết