Chương 3: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN.

H24

Trong không gian tọa độ \(Oxyz\) cho đường thẳng \(d:\dfrac{x-1}{2}=\dfrac{y-1}{2}=\dfrac{z+1}{1}\) và hai điểm \(A\left(6;0;0\right)\)\(B\left(0;0;-6\right)\). Khi điểm \(M\) thay đổi trên đường thẳng \(d\), hãy tìm giá trị nhỏ nhất của biểu thức \(P=MA+MB\)

A. \(minP=6\sqrt{3}\)     B. \(minP=6\sqrt{2}\)    C. \(minP=9\)      D. \(minP=12\)

Mình cần bài giải ạ, mình cảm ơn nhiều♥

undefined

NL
15 tháng 4 2022 lúc 23:26

Phương trình d dạng tham số: \(\left\{{}\begin{matrix}x=1+2t\\y=1+2t\\z=-1+t\end{matrix}\right.\) 

Gọi \(M\left(1+2t;1+2t;-1+t\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(2t-5;2t+1;t-1\right)\\\overrightarrow{BM}=\left(2t+1;2t+1;t+5\right)\end{matrix}\right.\)

\(\Rightarrow P=\sqrt{\left(2t-5\right)^2+\left(2t+1\right)^2+\left(t-1\right)^2}+\sqrt{\left(2t+1\right)^2+\left(2t+1\right)^2+\left(t+5\right)^2}\)

\(=\sqrt{9t^2-18t+27}+\sqrt{9t^2+18t+27}\)

\(=\sqrt{\left(3-3t\right)^2+18}+\sqrt{\left(3+3t\right)^2+18}\)

\(\ge\sqrt{\left(3-3t+3+3t\right)^2+4.18}=6\sqrt{3}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
PL
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
TD
Xem chi tiết
HK
Xem chi tiết
MT
Xem chi tiết
PD
Xem chi tiết
BQ
Xem chi tiết