Chương 3: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN.

NH

Trong không gian với hệ trục tọa độ Oxyz,qua 2 điểm M(1;-1;1) và N(0;-1;0) lập phương trình mặt phẳng \(\alpha\) cắt mặt cầu \(\left(S\right)\left(x+2\right)^2+\left(y+1\right)^2+\left(z-1\right)^2=5\) một thiết diện đường tròn mà diện tích hình tròn sinh bởi đường tròn có diện tích \(S=\pi\)

NN
5 tháng 4 2016 lúc 20:56

Mặt cầu (S) có tâm I(-2;-1;1) và bán kính \(R=\sqrt{5}\)

Gọi r là bán kinh đường tròn thiết diện, theo giả thiết ta có : \(S=\pi\Leftrightarrow r^2.\pi=\pi\Rightarrow r=1\)

Gọi d là khoảng cách từ I đến mặt phẳng \(\alpha\), ta có \(d^2=R^2-r^2=5-1\Rightarrow d=2\)

Mặt phẳng  \(\alpha\), qua N (0;-1;0) có dạng \(Ax+B\left(y+1\right)+Cz=0\Leftrightarrow Ax+By+Cz+B=0\left(A^2+B^2+C^2\ne0\right)\)

Mặt khác,  \(\alpha\)  qua M(1;-1;1) nên thỏa mãn \(A+C=0\Rightarrow\text{ }\) \(\alpha:Ax+By-Az+B=0\)

Vì \(d=d\left(I,\alpha\right)=\frac{\left|-3A\right|}{\sqrt{2A^2+B^2}}=2\Leftrightarrow A^2=4B^2\Rightarrow\frac{A}{B}=\pm2\) vì \(A^2+B^2+C^2\ne0\)

Do đó có 2 mặt phẳng  \(\alpha\), cần tìm là \(2x+y-2z+1=0\) và \(2x-y-2z-1=0\)

Bình luận (0)

Các câu hỏi tương tự
PL
Xem chi tiết
H24
Xem chi tiết
TD
Xem chi tiết
TD
Xem chi tiết
PL
Xem chi tiết
NQ
Xem chi tiết
NQ
Xem chi tiết
NQ
Xem chi tiết
LH
Xem chi tiết