PB

Trong không gian với hệ tọa độ Oxyz, cho hình thang cân ABCDAB là đáy lớn, CD là đáy nhỏ và A ( 3;-1;-2 ); B ( 1;5;1 ); C ( 2;3;3 ). Tìm tọa độ điểm D của hình thang cân.

A. D ( 4;3;0 ) 

B. D  164 49 ; 51 49 ; 48 49

C. D  1 2 ; 1 3 ; 1 4

D. D ( -4;3;0 ) 

CT
28 tháng 10 2017 lúc 8:06

Vì ABCD là hình thang cân nên AD = BC = 3.

Gọi là đường thẳng qua C và song song với AB.

Gọi (S) là mặt cầu tâm A bán kính R = 3. Điểm D cần tìm là giao điểm của ∆ và (S).

Đường thẳng có vectơ chỉ phương A B → - 2 ; 6 ; 3 nên có phương trình:

x = 2 - 2 t y = 3 + 6 t z = 3 + 3 t

Phương trình mặt cầu

S : x - 3 2 + y + 1 2 + z + 2 2 = 9 .

Tọa độ điểm D là nghiệm của phương trình

- 2 t - 1 2 + 6 t + 4 2 + 3 t + 5 2 = 9 ⇔ 49 t 2 + 82 t + 33 = 0 ⇔ t = - 1 t = - 33 49 .

Đáp án B

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
HH
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết