PB

Trong không gian với hệ tọa độ Oxyz, cho hai mặt cầu P : x 2 + y 2 + z 2 + 4 x + 2 y + z = 0  và Q : x 2 + y 2 + z 2 − 2 x − y − z = 0  cắt nhau theo một đường tròn (C) và cho ba điểm A 1 ; 0 ; 0 , B 0 ; 1 ; 0 , C 0 ; 0 ; 1 . Hỏi có tất cả bao nhiêu mặt cầu có tâm thuộc mặt phẳng chứa đường tròn (C) và tiếp xúc với cả ba đường thẳng AB, AC, BC?

A. 4 mặt cầu

B. 1 mặt cầu

C. 2 mặt cầu

D. Vô số mặt cầu

CT
15 tháng 1 2017 lúc 4:44

Đáp án A

Ba điểm A,B,C tạo thành một tam giác. Có 4 đường tròn tiếp xúc với cả ba đường thẳng AB,AC,BC (hình vẽ trên).

Mặt cầu (S) cần tìm tiếp xúc với 3 đường thẳng AB,AC,BC, do đó nó phải chứa 1 trong 4 đường tròn trên.

Xét với 1 đường tròn bất kì trong 4 đường tròn trên, giả sử là đường tròn tâm (O) nằm bên trong tam giác, ta có:

Tâm I của mặt cầu (S) phải nằm trên đường thẳng d đi qua tâm O và vuông góc với (ABC). Mặt khác, I thuộc mp (P) chứa (C), (C) lại không vuông góc với (ABC) do đó chỉ có 1 giao điểm của d với (P). Tương tự, với 3 đường tròn còn lại, với mỗi đường tròn ta tìm được 1 tâm I nữa. Vậy có 4 mặt cầu thỏa mãn yêu cầu.

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết