Đáp án B
Ta có:
trung điểm của AB là (-2;-1;1)
Mặt phẳng trung trực của AB qua điểm (-2;-1;1) và có VTPT là
Suy ra
Hay 3x -2 y -z- 5 =0
Đáp án B
Ta có:
trung điểm của AB là (-2;-1;1)
Mặt phẳng trung trực của AB qua điểm (-2;-1;1) và có VTPT là
Suy ra
Hay 3x -2 y -z- 5 =0
Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (P): 3x -2y+2z-5=0 và (Q): 4x+5y-z+1=0 Các điểm A, B phân biệt thuộc giao tuyến của hai mặt phẳng (P) và (Q) cùng phương với vectơ nào sau đây?
A. w → = ( 3 ; - 2 ; 2 )
B. v → = ( - 8 ; 11 ; - 23 )
C. a → = ( 4 ; 5 ; - 1 )
D. u → = ( 8 ; - 11 ; - 23 )
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 3x - 2y + z - 5 = 0. Điểm nào dưới đây thuộc mặt phẳng (P)?
A. N(3;-2;-5)
B. P(0;0;-5)
C. Q(3;-2;1)
D. M(1;1;4).
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 3x-2y-z+5=0 và đường thẳng ∆ : x - 1 2 = y - 7 1 = z - 3 4 . Gọi (Q) là mặt phẳng chứa đường thẳng ∆ và song song với (P). Tính khoảng cách giữa hai mặt phẳng (P) và (Q).
A. 9 14
B. 9 14
C. 3 14
D. 3 14
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng α : 3x-2y+z+6=0. Hình chiếu vuông góc của điểm A(2;-1;0) lên mặt phẳng α có tọa độ là
A. (1;0;3)
B. (-1;1;-1)
C. (2;-2;3)
D. (1;1;-1)
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : x + 1 1 = y - 3 = z - 5 - 1 và mặt phẳng P : 3 x - 2 y + 2 z + 6 = 0 . Mệnh đề nào sau đây đúng?
A. d vuông góc với (P)
B. d nằm trong (P)
C. d nằm trong và không vuông góc với (P)
D. d song song với (P)
Trong không gian với hệ toạ độ Oxyz, (α) là mặt phẳng đi qua điểm A ( 2 ; - 1 ; 5 ) và vuông góc với hai mặt phẳng ( P ) : 3 x – 2 y + z – 1 = 0 v à ( Q ) : 5 x – 4 y + 3 z + 10 = 0 . Phương trình mặt phẳng (α) là:
A. x + 2y + z- 5 = 0.
B. 2x – 4y – 2z – 9 = 0.
C. x - 2y + z -1 = 0
D. x- 2y- z + 1 = 0
Trong không gian với hệ tọa độ Oxyz, cho điểm A(-2;1;5) và hai mặt phẳng (P): 2x + y + 3z - 7 = 0, (Q): 3x - 2y - z + 1 = 0. Gọi M là điểm nằm trên mặt phẳng (P) và điểm N nằm trên mặt phẳng (Q) thỏa mãn A M → = 2 A N → . Khi M di động trên mặt phẳng (P) thì quỹ tích điểm N là một đường thẳng có phương trình là
A. x = - 3 - 5 t y = - 1 + 11 t z = 6 - 7 t
B. x = 1 + 7 t y = - 8 - 5 t z = 6 - 7 t
C. x = 7 + 11 t y = - 8 - 5 t z = - 8 - 7 t
D. x = 2 + 5 t y = 3 + 11 t z = - 1 - 7 t
Cho mặt phẳng (P): x-2y+z+5=0. Viết phương trình mặt phẳng α vuông góc với mặt phẳng (P) và chứa đường thẳng d là giao của hai mặt phẳng P 1 : x - 2 z = 0 và P 2 : 3 x - 2 y + z - 3 = 0
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x 2 = y - 3 1 = z - 2 1 và hai mặt phẳng
(P): x-2y+2z=0. (Q): x-2y+3z-5=0. Mặt cầu (S) có tâm I là giao điểm của đường thẳng d và mặt phẳng (P). Mặt phẳng (Q) tiếp xúc với mặt cầu (S). Viết phương trình của mặt cầu (S).
Trong không gian với hệ tọa độ Oxyz cho điểm A(1;-1;1) mặt phẳng (P):x-2y+z-1=0 và đường thẳng d : x 1 = y - 2 2 = z - 1 - 1 . Viết phương trình đường thẳng đi qua A, song song với mặt phẳng (P) cắt đường thẳng d.