PB

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A 1 ; 1 ; 0 ,    B 0 ; − 1 ; 2 .  Biết rằng có hai mặt phẳng cùng đi qua hai điểm O, A và cùng cách B một khoảng bằng 3 .  Vecto nào trong các vecto dưới đây là một vecto pháp tuyến của một trong hai mặt phẳng đó?  

A.  n 1 → = 1 ; − 1 ; − 1 .

B.  n 2 → = 1 ; − 1 ; − 3 .

C.  n 3 → = 1 ; − 1 ; 5 .

D.  n 4 → = 1 ; − 1 ; − 5 .

CT
21 tháng 8 2017 lúc 6:09

Đáp án D.

Phương pháp:

Gọi n → a ; b ; c ,   n → ≠ 0 →  là một VTPT của α .  Viết phương trình mặt phẳng  α .

Sử dụng các giả thiết O ∈ α ;   A ∈ α ;   d B ; α = 3  lập hệ phương trình tìm a, b, c.

Cách giải:

Gọi n → a ; b ; c ,   n → ≠ 0 →  là một VTPT của  α .

O 0 ; 0 ; 0 ∈ α ⇒ α : a x + b y + c z = 0  

A 1 ; 1 ; 0 ∈ α ⇒ a + b = 0 ⇒ b = − a ⇒ α : a x − a y + c z = 0  

d B ; α = 3 ⇔ a .0 − a . − 1 + 2 c 2 a 2 + c 2 = 3 ⇔ a + 2 c 2 a 2 + c 2 = 3  

  ⇔ a + 2 c 2 = 3 2 a 2 + c 2 ⇔ a 2 + 4 a c + 4 c 2 = 6 a 2 + 3 c 2 ⇔ 5 a 2 − 4 a c − c 2 = 0

Cho

a = 1 ⇒ c 2 + 4 c − 5 = 0 ⇔ c = 1 c = − 5 ⇒ n → 1 ; − 1 ; 1

hoặc n → 1 ; − 1 ; − 5 .  

 

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết