Trong không gian tọa độ Oxyz, cho đường thẳng x - 1 1 = y - 2 - 2 = z + 1 - 1 và mặt phẳng (P):2x - y - 2z - 2018 = 0. Phương trình mặt phẳng (Q) chứa đường thẳng D và tạo với (P) một góc nhỏ nhất cắt các trục tọa độ lần lượt tại các điểm A, B, C. Thể tích tứ diện O.ABC là:
A. 1 6
B. 32 3
C. 32 6
D. 64 3
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 1 1 = y - 1 1 = z - 2 - 2 và mặt phẳng (P): x + 2y + z - 6 = 0. Mặt phẳng (Q) chứa d và cắt (P) theo giao tuyến là đường thẳng ∆ cách gốc tọa độ O một khoảng ngắn nhất. Viết phương trình mặt phẳng (Q)
A. x - y + z - 4 = 0
B. x + y + z + 4 = 0
C. x + y + z - 4 = 0
D. x + y - z - 4 = 0
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình x − 2 2 = y − 1 1 = z − 1 và mặt phẳng P : − 2 x + y − 2 z + 3 = 0 . Mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ nhất, điểm nào sau đây thuộc mặt phẳng (Q).
A. 1 ; 1 ; 10 13
B. − 2 ; 3 ; 1 10
C. 1 13 ; 2 ; 0
D. 3 10 ; 1 ; − 2
Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng Q chứa đường thẳng d : x = y x - 2 y + z = 0 và vuông góc với mặt phẳng P : 2 x + y - 1 = 0 .
A. Q : x + 2 y - z + 1 = 0
B. Q : - x + 2 y + z - 1 = 0
C. Q : - x + 2 y - z + 1 = 0
D. Q : - x + 2 y - 2 z + 2 = 0
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 1 = y + 1 2 = z - 2 1 và mặt phẳng P : 2 x - y - 2 z - 2 = 0 . (Q) là mặt phẳng chứa d và tạo với mặt phẳng (P) một góc nhỏ nhất. Gọi n Q → a ; b ; 1 là một vecto pháp tuyến của (Q). Đẳng thức nào đúng?
A. a - b = - 1
B. a + b = - 2
C. a - b = 1
D. a + b = 0
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 1 = y + 1 2 = z - 2 1 và mặt phẳng (P): 2x-y-2z-2=0. (Q) là mặt phẳng chứa d và tạo với mặt phẳng (P) một góc nhỏ nhất. Gọi n Q → a , b , 1 là một vecto pháp tuyến của (Q). Đẳng thức nào đúng?
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( P ) : x + y + z - 7 = 0 và đường thẳng d : x - 3 - 2 = y + 8 4 = z - 1 . Phương trình mặt phẳng (Q) chứa d đồng thời vuông góc với mặt phẳng (P) là:
A. (Q): 5x+y-6z+7=0
B. (Q): 5x-y-6z+7=0
C. (Q): 5x+y-6z-7=0
D. (Q): 5x-y-6z+-=0
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : x - 1 2 = y 1 = z + 1 3 và mặt phẳng ( Q ) : 2 x + y - z = 0 . Mặt phẳng (P) chứa đường thẳng d và vuông góc với mặt phẳng (Q) có phương trình là:
A. ( P ) : - x + 2 y - 1 = 0
B. ( P ) : x - y - z = 0
C. ( P ) : x - 2 y - 1 = 0
D. ( P ) : x + 2 y + z = 0
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng: △ : x 1 = y - 1 1 = z - 2 - 1 và mặt phẳng (P): x+2y+2z-4=0. Phương trình đường thẳng d nằm trong mặt phẳng (P) sao cho d cắt và vuông góc với đường thẳng Δ là
A. d : x = - 3 + t y = 1 - 2 t z = 1 - t
B. d : x = 3 t y = 2 + t z = 2 + 2 t
C. d : x = - 2 - 4 t y = - 1 + t z = 4 - t
D. d : x = - 1 - t y = 3 - 3 t z = 3 - 2 t