Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A(1;0;0),B(0;1;0),C(0;0;1),D(0;0;0). Hỏi có bao nhiêu điểm cách đều bốn mặt phẳng (ABC),(BCD),(CDA),(DBA)?
A. 5
B. 1
C. 8
D. 4
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 0; 0), B(0; -2; 0), C(0; 0; -5). Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng (ABC)
A. n → = ( 1 ; 1 2 ; 1 5 )
B. n → = ( 1 ; - 1 2 ; - 1 5 )
C. n → = ( 1 ; - 1 2 ; 1 5 )
D. n → = ( 1 ; 1 2 ; - 1 5 )
Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A(1;2;1), B(-2;1;3), C(2;-1;3), D(0;3;1). Mặt phẳng (P):ax+by+cz-10=0 đi qua hai điểm A, B và cách đều hai điểm C, D và hai điểm C, D nằm khác phía so với mặt phẳng (P). Tính S=a+b+c.
A. S=7.
B. S=15.
C. S=6.
D. S=13.
Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A 1 ; 2 ; 1 , B - 2 ; 1 ; 3 , C 2 ; - 1 ; 3 . Mặt phẳng ( P ) : a x + b y + c z - 10 = 0 đi qua hai điểm A, B và cách đều hai điểm C, D và hai điểm C, D nằm khác phía so với mặt phẳng ( P ) . Tính S = a + b + c .
A. S = 7
B. S = 15
C. S = 6
D. S = 13
Trong không gian với hệ tọa độ Oxyz cho hai điểm A 0 ; 0 ; 3 , B − 2 ; 0 ; 1 và mặt phẳng α : 2 x − y + 2 z + 8 = 0 . Hỏi có bao nhiêu điểm C trên mặt phẳng α sao cho tam giác ABC đều.
A. 2
B. 0
C. 1
D. Vô số
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(0; 0; 2), B(3; 0; 5), C(1; 1; 0). Tọa độ của điểm D sao cho ABCD là hình bình hành là
A. D(4; 1; 3)
B. D(-4; -1; -3)
C. D(2; 1; -3)
D. D(-2; 1; -3)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : 2 x − y + 2 z + 2 = 0 và điểm A(1;-2;0). Mặt phẳng α song song với (P) và cách A một khoảng bằng 2 có dạng 2 x + a y + b z + c = 0 . Khi đó, tổng a + b + c bằng bao nhiêu?
A. -1
B. -10
C. -9
D. 3
Trong không gian với hệ tọa độ Oxyz lấy các điểm A(a;0;0), B(0;b;0), C(0;0;c) trong đó a > 0 , b > 0 , c > 0 và 1 a + 1 b + 1 c = 2 . Khi a, b, c thay đổi, mặt phẳng (ABC) luôn đi qua một điểm cố định có tọa độ
A. (1;1;1)
B. (2;2;2)
C. 1 2 ; 1 2 ; 1 2
D. - 1 2 ; - 1 2 ; - 1 2
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) cắt ba trục tọa độ lần lượt là A(a;0;0), B(0;b;0), C(0;0;c) với a b c ≠ 0 thỏa mãn 2 a + b = a b 2 c + 1 - 1 b . Khoảng cách lớn nhất từ O đến mặt phẳng (P) là:
A. 7
B. 17
C. 3
D. 1 17