Đáp án B.
Cách 1: Ta có
Cách 2:
Theo công thức phương trình đoạn chắn ta có phương trình
Suy ra phương trình pháp tuyến của (ABC) là
Đáp án B.
Cách 1: Ta có
Cách 2:
Theo công thức phương trình đoạn chắn ta có phương trình
Suy ra phương trình pháp tuyến của (ABC) là
Trong không gian với hệ trục tọa độ Oxyz ,cho 3 điểm A(1;0;0), B(0;-2;0), C(0;0;-5). Vectơ nào là một vectơ pháp tuyến của mặt phẳng (ABC)
A. 1 ; 1 2 ; 1 5
B. 1 ; - 1 2 ; - 1 5
C. 1 ; - 1 2 ; 1 5
D. 1 ; 1 2 ; - 1 5
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) đi qua điểm A(0;1;1); B(1;-2;0) và C(1;0;2). Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng (P)
A. (-4;2;-2)
B. (2;-1;1)
C. (4;2;2)
D. (2;1;-1)
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;0;0), B(0;1;0), C(0;0;-2). Véc tơ nào dưới đây là véc tơ pháp tuyến của mặt phẳng (ABC)?
A. n 4 → = ( 2 ; 2 ; - 1 )
B. n 3 → = ( - 2 ; 2 ; 1 )
C. n 1 → = ( 2 ; - 1 ; - 1 )
D. n 2 → = ( 1 ; 1 ; - 2 )
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x+3y-4z-5=0. Vectơ nào dưới đây là một vectơ pháp tuyến của (P)
A. n 1 → = ( 2 ; - 3 ; 4 )
B. n 2 → = ( 2 ; 3 ; 4 )
C. n 3 → = ( 2 ; 4 ; 5 )
D. n 4 → = ( 2 ; - 3 ; - 5 )
Trong không gian với hệ tọa độ Oxyz vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng (Oxyz)?
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): 3x - z + 2 = 0. Vectơ nào dưới đây là một vectơ pháp tuyến của (P)?
A. (3;-1;2)
B. (-1;0;1)
C. (3;0;-1)
D. (3;-1;0)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x - 3z + 2 = 0. Vectơ nào dưới đây là vectơ pháp tuyến của (P)
A. (-2;3;0)
B. (2;-3;1)
C. (2;-3;2)
D. (2;0;-3)
Trong không gian với hệ tọa độ đề các vuông góc Oxyz, cho mặt phẳng (P): x-2y+2z-4=0. Vectơ nào dưới đây là vectơ pháp tuyến của mặt phẳng (P)?
Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P) có phương trình y − z + 2 = 0 . Vectơ nào dưới đây là vectơ pháp tuyến của (P)?
A. n → = ( 1 ; − 1 ; 2 ) .
B. n → = ( 1 ; − 1 ; 0 ) .
C. n → = ( 0 ; 1 ; − 1 ) .
D. n → = ( 0 ; 1 ; 1 ) .