Đáp án B
là véc-tơ pháp tuyến của mặt phẳng (P).
Phương trình của mặt phẳng (P) là -2(x-2)-2(y-3)+(z-1)=0 hay 2x+2y-z-9=0.
Đáp án B
là véc-tơ pháp tuyến của mặt phẳng (P).
Phương trình của mặt phẳng (P) là -2(x-2)-2(y-3)+(z-1)=0 hay 2x+2y-z-9=0.
Trong không gian với hệ toạ độ Oxyz, (α) là mặt phẳng đi qua điểm A ( 2 ; - 1 ; 5 ) và vuông góc với hai mặt phẳng ( P ) : 3 x – 2 y + z – 1 = 0 v à ( Q ) : 5 x – 4 y + 3 z + 10 = 0 . Phương trình mặt phẳng (α) là:
A. x + 2y + z- 5 = 0.
B. 2x – 4y – 2z – 9 = 0.
C. x - 2y + z -1 = 0
D. x- 2y- z + 1 = 0
Trong không gian với hệ trục tọa độ Oxyz, phương trình của mặt phẳng (P) đi qua điểm B(2;1;-3), đồng thời vuông góc với hai mặt phẳng (Q): x+y+3z=0, (R): 2x-y+z=0 là
Trong không gian với hệ trục tọa độ Oxyz, mặt phẳng (P) đi qua hai điểm A(0;1;0), B(2;3;1) và vuông góc với mặt phẳng (Q):x+2y-z=0 có phương trình là
Trong không gian Oxyz, viết phương trình mặt phẳng (P) đi qua điểm M ( - 1 ; - 2 ; 5 ) và vuông góc với hai mặt phẳng ( Q ) : x + 2 y - 3 z + 1 = 0 v à ( R ) : 2 x - 3 y + z + 1 = 0 .
A. x- y + z – 6 = 0
B. x + y - z + 8 = 0
C. –x + y + z – 4 = 0
D. x + y + z - 2 = 0
Trong không gian Oxyz, viết phương trình mặt phẳng (P) đi qua điểm M ( - 1 ; - 2 ; 5 ) và vuông góc với hai mặt phẳng ( Q ) : x + 2 y - 3 z + 1 = 0 v à ( R ) : 2 x - 3 y + z + 1 = 0 .
A. x- y + z – 6 = 0
B. x + y - z + 8 = 0
C. –x + y + z – 4 = 0
D. x + y + z - 2 = 0
Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;1;2) và mặt phẳng (P): 2x-y+3z+1=0. Đường thẳng đi qua điểm M và vuông góc với mặt phẳng (P) có phương trình
A. x + 1 2 = y + 1 - 1 = z + 2 3
B. x + 2 1 = y - 1 1 = z + 3 2
C. x - 2 1 = y + 1 1 = z - 3 2
D. x - 1 2 = y - 1 - 1 = z - 2 3
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;0;1), B(2;1;2) và mặt phẳng (P):x+2y+3z+3=0. Phương trình mặt phẳng ( α ) đi qua hai điểm A, B và vuông góc với mặt phẳng là:
A. x + 2y -z +6 =0
B.x + 2y -3z +6 =0
C. x -2y + z-2 =0
D. x + 2y -3z +6 =0
Trong không gian với hệ tọa độ Oxyz, cho điểm A(-2;1;5) và hai mặt phẳng (P): 2x + y + 3z - 7 = 0, (Q): 3x - 2y - z + 1 = 0. Gọi M là điểm nằm trên mặt phẳng (P) và điểm N nằm trên mặt phẳng (Q) thỏa mãn A M → = 2 A N → . Khi M di động trên mặt phẳng (P) thì quỹ tích điểm N là một đường thẳng có phương trình là
A. x = - 3 - 5 t y = - 1 + 11 t z = 6 - 7 t
B. x = 1 + 7 t y = - 8 - 5 t z = 6 - 7 t
C. x = 7 + 11 t y = - 8 - 5 t z = - 8 - 7 t
D. x = 2 + 5 t y = 3 + 11 t z = - 1 - 7 t
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;1;1) và hai mặt phẳng (P):2x-y+3z-1=0, (Q): y=0. Viết phương trình mặt phẳng chứa A, vuông góc với cả hai mặt phẳng và ?
A. 3x+y-2z-2=0
B. 3x-2z=0
C. 3x-2z-1=0
D. 3x-y+2z-4=0