Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Trong không gian Oxyz, viết phương trình mặt phẳng (P) đi qua điểm A ( 1 ; 0 ; - 2 ) và có vectơ pháp tuyến n → 1 ; - 1 ; 2 .
A. x - y + 2z – 3 = 0
B. x – y + 2z + 3 = 0
C. x - 2z + 3 = 0
D. x + 2z – 3 = 0
Trong không gian Oxyz, viết phương trình mặt phẳng (P) đi qua điểm A ( 1 ; 0 ; - 2 ) và có vectơ pháp tuyến n → 1 ; - 1 ; 2 .
A. x – 2z + 3 = 0
B. x – y + 2z + 3 = 0
C. x + 2y – z + 3 = 0
D. x - 2z - 3 = 0
Trong không gian Oxyz, viết phương trình mặt phẳng (P) đi qua điểm A ( 1 ; 0 ; - 2 ) và có vectơ pháp tuyến n → 1 ; - 1 ; 2 .
A. x - y + 2z – 3 = 0
B. x - y + 2z + 3 = 0
C. x - 2z + 3 = 0
D. x + 2z – 3 = 0
Trong không gian Oxyz, cho mặt phẳng (P): x - 2y + 2z - 7 = 0. Tìm một vectơ pháp tuyến n → của mặt phẳng (P).
A. (-1;2;-2)
B. (1;2;2)
C. (-2;-4;4)
D. (2;-4;-4)
Trong không gian Oxyz cho A(-1;-1;0), B(0;1;0), M(a;b;c) với (b<0) thuộc mặt phẳng (P): x+y+z+2=0 sao cho A M = 2 và mặt phẳng (ABM) vuông góc với mặt phẳng (P) Khi đó T = 2 a - 4 b 2 + c bằng
A. -8
B. 7
C. 28
D. -17
Trong không gian Oxyz, viết phương trình mặt phẳng (P) đi qua điểm A(1;-2;3) và có vectơ pháp tuyến n → 2 ; - 1 ; - 2 .
A. x – 2y +3z + 2 = 0
B. x – 2y + 3z - 2 = 0
C. 2x - y - 2z + 2 = 0
D. 2x - y + 2z – 3 = 0
Trong không gian Oxyz, cho mặt phẳng (P) đi qua ba điểm A(1;1;1), B(2;3;-1), C(0;3;-2). Một vectơ pháp tuyến của mặt phẳng (P) là:
A. n p → = 2 ; 5 ; - 4
B. n p → = 2 ; - 5 ; 4
C. n p → = - 2 ; 5 ; 4
D. n p → = 2 ; - 5 ; - 4
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I (1;0;-1) và cắt mặt phẳng (P): 2x+y-2z-16=0 theo giao tuyến là một đường tròn có bán kính bằng 3. Phương trình của mặt cầu (S) là:
A. (x-1)²+y²+ (z+1)²=25.
B.(x+1)²+y²+ (z-1)²=25
C. (x-1)²+y²+ (z+1)²=9.
D.(x+1)²+y²+ (z-1)²=9.
Trong không gian (Oxyz), cho mặt phẳng (P) 3x+y-2z+1=0. Vectơ nào sau đây là vec tơ pháp tuyến của mặt phẳng
A. (3;1;-2)
B. (1;-2;1)
C. (-2;1;3)
D. (3;-2;1)