Trong không gian với hệ trục toạ độ (Oxyz), cho mặt cầu ( S ) : ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 9 điểm A(0;0;2). Phương trình mặt phẳng (P) đi qua A và cắt mặt cầu (S) theo thiết diện là hình tròn (C) có diện tích nhỏ nhất là
A. ( P ) : x + 2 y + 3 z + 6 = 0
B. ( P ) : x + 2 y + z - 2 = 0
C. ( P ) : x - 2 y + z - 6 = 0
D. ( P ) : 3 x + 2 y + 2 z - 4 = 0
Trong không gian tọa độ Oxyz, cho mặt cầu S : x - 1 2 + y - 2 2 + z - 3 2 = 25 . Mặt phẳng (Oxy) cắt mặt cầu (S) theo thiết diện là một đường tròn (C). Diện tích hình tròn đó là
A. S = 8 π
B. S = 12 π
C. S = 16 π
D. S = 4 π
Trong không gian tọa độ Oxyz, cho mặt cầu (S): (x-2)2 + y2 + (z+1)2 = 9 và mặt phẳng (P): 2x-y-2z-3=0. Biết rằng mặt cầu (S) cắt (P) theo giao tuyến là đường tròn (C). Tính bán kính R của (C).
Trong không gian Oxyz cho mặt cầu (S): ( x - 1 ) 2 + ( y + 2 ) 2 + ( z - 3 ) 2 = 27 . Gọi ( α ) là mặt phẳng đi qua hai điểm A(0;0;-4), B(2;0;0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón có đỉnh là tâm của (S), đáy là (C) có thể tích lớn nhất. Biết mặt phẳng ( α ) có phương trình dạng ax+by-z+c= 0, khi đó a-b+c bằng:
A. -4.
B. 8
C. 0
D. 2
Trong không gian với hệ trục tọa độ Oxyz cho mặt cầu S : x 2 + y 2 + z 2 - 6 x - 4 y - 12 z = 0 và mặt phẳng P : 2 x + y - z - 2 = 0 . Tính diện tích thiết diện của mặt cầu (S) cắt bởi mặt phẳng (P).
A. S = 49 π
B. S = 50 π
C. S = 25 π
D. S = 36 π
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( P ) : 2 x − 2 y − z − 9 = 0 và mặt cầu ( S ) : ( x − 3 ) 2 + ( y + 2 ) 2 + ( z − 1 ) 2 = 100 . Biết (P) cắt (S) theo giao tuyến là một đường tròn. Tìm tọa độ tâm của đường tròn giao tuyến.
A. (3;2;-1)
B. (-3;2;-1)
C. (3;-2;1)
D. (-3;2;1)
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): ( x - 1 ) 2 + ( y - 1 ) 2 + ( z + 2 ) 2 = 4 và điểm A(1;1;-1). Ba mặt phẳng thay đổi đi qua A và đôi một vuông góc với nhau, cắt mặt cầu (S) theo ba giao tuyến là các đường tròn ( C 1 ) , ( C 2 ) , ( C 3 ) . Tính tổng diện tích của ba đường tròn ( C 1 ) , ( C 2 ) , ( C 3 )
A. 4 π
B. 12 π
C. 11 π
D. 3 π
Trong không gian Oxyz, cho mặt cầu ( S ) : ( x + 2 ) 2 + ( y + 1 ) 2 + ( z - 1 ) 2 = 12 . Mặt phẳng nào sau đây cắt mặt cầu (S) theo giao tuyến là một đường tròn?
A. ( P 1 ) : x + y - z + 2 = 0
B. ( P 2 ) : x + y - z - 2 = 0
C. ( P 3 ) : x + y - z + 10 = 0
D. ( P 4 ) : x + y - z - 10 = 0
Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(2;-1;-1),B(4;-5;-5) và mặt phẳng (P):x+y+z-3=0. Mặt cầu (S) thay đổi qua hai điểm A,B và cắt mặt phẳng (P) theo giao tuyến là đường tròn (C) có tâm H và bán kính bằng 3. Biết rằng H luôn thuộc một đường tròn cố định. Tìm bán kính của đường tròn đó.
A. 21 .
B. 2 6 .
C. 6.
D. 3 3 .