Đáp án A
Toạ độ tâm T của (S) là T(1;2;3).
Đáp án A
Toạ độ tâm T của (S) là T(1;2;3).
Trong không gian Oxyz, cho mặt cầu (S) có phương trình x 2 + y 2 + z 2 - 2 x - 4 y - 6 y - 11 = 0 . Tọa độ tâm T của (S) là
A. T(1;2;3)
B. T(2;4;6)
C. T(-2;-4;-6)
D. T(-1;-2;-3)
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình x²+y²+z²+2x-4y+6z-2=0. Tìm tọa độ tâm I và tính bán kính R của (S).
A. Tâm I(-1;2;-3) và bán kính R=4
B. Tâm I(1;-2;3) và bán kính R=4
C. Tâm I(-1;2;3) và bán kính R=4
D. Tâm I(1;-2;3) và bán kính R=16.
Trong không gian Oxyz, cho mặt cầu (S) có phương trình x²+y²+z²-2x+4y-6z+9=0. Tìm tọa độ tâm I và tính bán kính R của mặt cầu (S).
A. I(-1;2;3), R=√5
B. I(1;-2;3), R=√5
C. I(1;-2;3), R=5
D. I(-1;2;-3), R=5.
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S) có phương trình là x²+y²+z²-2x-4y-6z+5=0. Tính diện tích mặt cầu (S).
A. 42π
B. 36π
C. 9π
D. 12π.
Trong không gian với trục tọa độ Oxyz, cho x 2 + y 2 + z 2 +2x-4y+6z-2=0
là phương trình mặt cầu (S). Mặt cầu ( S ' ) đồng tâm với mặt cầu (S)
(có tâm trùng với tâm mặt cầu (S)) và đi qua điểm M (1;3;-1). Khi đó,
bán kính R của mặt cầu ( S ' ) bằng bao nhiêu
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): 2x + y -2z + m = 0 và mặt cầu (S): x2 + y2 + z2 - 2x + 4y -6z - 2= 0. Có bao nhiêu giá trị nguyên của m để mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn (T) có chu vi bằng 4π√3
A. 3
B. 4
C. 2
D. 1
Trong không gian Oxyz cho mặt phẳng (P): 2x-2y-z-4=0 và mặt cầu (S): x 2 + y 2 + z 2 - 2 x - 4 y - 6 z - 11 = 0 . Biết rằng mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn (C). Tọa độ điểm H là tâm đường tròn (C) là:
A. H(3;0;2)
B. H(-1;4;4)
C. H(2;0;3)
D. H(4;4;-1)
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình
x 2 + y 2 + z 2 − 2 x + 4 y − 6 z − 2 = 0
Xác định tâm I và bán kính mặt cầu.
A. I 1 ; 2 ; 3 , R = 4.
B. I 1 ; - 2 ; 3 , R = 4.
C. I 2 ; − 4 ; 6 , R = 16.
D. I - 2 ; 4 ; 6 , R = 16.
Trong không gian với hệ tọa độ Oxyz, cho ( a ) : 2 x − 2 y − z + 14 = 0 , mặt cầu ( S ) : x 2 + y 2 + z 2 − 2 x − 4 y − 6 z − 11 = 0 . Mặt phẳng (P)//(a) cắt (S) theo thiết diện là một hình tròn có diện tích 16 π . Khi đó phương trình mặt phẳng (P) là
A. 2 x − 2 y − z + 14 = 0
B. 2 x − 2 y − z + 4 = 0
C. 2 x − 2 y − z + 16 = 0
D. 2 x − 2 y − z − 4 = 0