Cho hai điểm A(1;2;1) và B(4;5;-2) và mặt phẳng (P) có phương trình 3x-4y+5z+6=0. Đường thẳng AB cắt (P) tại điểm M. Tính tỷ số MB/MA.
A. 2
B. 1/4
C. 4
D. 3
Trong không gian Oxyz cho điểm A (1;2;-3) và mặt phẳng (P): 2x + 2y - z + 9 = 0 Đường thẳng d đi qua A vuông góc với mặt phẳng (Q): 3x + 4y - 4z + 1 = 0 và cắt mặt phẳng (P) tại điểm B. Điểm M nằm trong (P) sao cho M luôn nhìn AB dưới góc vuông. Tính độ dài lớn nhất của MB
A. 41 2
B. 5 2
C. 5
D. 41
Trong không gian Oxyz, cho hai điểm M 1 ; 2 ; 3 , A 2 ; 4 ; 4 và hai mặt phẳng Q : x - 2 y - z + 4 = 0 , P : x + y - 2 z + 1 = 0 . Đường thẳng ∆ đi qua điểm M, cắt hai mặt phẳng P , Q lần lượt tại B và C a ; b ; c sao cho tam giác ABC cân tại A và nhận AM làm đường trung tuyến. Tính T = a + b + c .
A. T = 9
B. T = 3
C. T = 7
D. T = 5
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2;-3) và mặt phẳng (P): 2x+2y-z+0=0. Đường thẳng d đi qua A và vuông góc với mặt phẳng (Q): 3x+4y-4z+5=0 cắt mặt phẳng (P) tại B. Điểm M nằm trong mặt phẳng (P) sao cho M luôn nhìn AB dưới góc vuông và độ dài MB lớn nhất. Tính độ dài MB.
A. M B = 41 2
B. M B = 5 2
C. M B = 5
D. M B = 41
Trong không gian với hệ tọa độ Oxyz, cho điểm A (1;2;1) và hai đường thẳng d 1 : x - 1 1 = y + 1 1 = z - 3 - 1 ; d 2 : x - 1 1 = y + 2 1 = z - 2 1 . Viết phương trình đường thẳng d song song với mặt phẳng P : 2 x + 3 y + 4 z - 6 = 0 , cắt đường thẳng d 1 , d 2 lần lượt tại M và N sao cho A M → A N → = 5 và điểm N có hoành độ nguyên.
A. d : x - 2 1 = y - 2 = z - 2 1
B. d : x - 3 1 = y - 1 2 = z - 1 - 2
C. d : x 3 = y + 2 2 = z - 4 - 3
D. d : x - 1 4 = y + 1 - 4 = z - 3 1
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2;2;–2) và B(3; –1;0). Đường thẳng AB cắt mặt phẳng (P): x + y – z + 2 = 0 tại điểm I. Tỉ số I A I B bằng:
A. 2
B. 6
C. 3
D. 4
Trong không gian Oxyz, cho điểm M 1 ; 1 ; 1 , mặt phẳng P : x - 3 y + 5 z - 3 = 0 và mặt cầu S : x 2 + y 2 + z 2 - 4 = 0 . Gọi d là đường thẳng đi qua M nằm trong (P) và cắt (S) tại hai điểm A, B sao cho góc AOB bằng 60 ° . Véc tơ nào dưới đây là véc tơ chỉ phương của d
A. u 1 → - 1 ; 2 ; - 1
B. u 2 → 2 ; - 1 ; - 1
C. u 3 → 1 ; - 1 ; 2
D. u 4 → 1 ; 1 ; 2
Trong không gian với hệ tọa độ Oxyz, cho điểm A ( 1 ; 2 ; − 3 ) và mặt phẳng P : 2 x + 2 y − z + 9 = 0. Đường thẳng đi qua A và vuông góc với mặt phẳng Q : 3 x + 4 y − 4 z + 5 = 0 cắt mặt phẳng (P) tại B. Điểm M nằm trong mặt phẳng (P) sao cho M luôn nhìn đoạn AB dưới một góc vuông và độ dài MB lớn nhất. Độ dài MB là:
A. M B = 5
B. M B = 5 2
C. M B = 41 2
D. M B = 41
Trong không gian Oxyz, cho các điểm A(2 ;1 ;0),B(0 ;4 ;0),C(0,2,-1) Biết đường thẳng ∆ vuông góc với mặt phẳng (ABC) và cắt đường thẳng d : x - 1 2 = y + 1 1 = z - 2 3 tại điểm D(a ;b ;c) thỏa mãn a > 0 và tứ diện ABCD có thể tích bằng 17/6. Tổng a+b+c bằng
A. 5
B. 4
C. 7
D. 6