Đáp án D
Phương pháp: (Oxy): z = 0, (Oyz): x = 0, (Oxz): y = 0
Trục Oy: x = 0 y = t z = 0
Cách giải: M (1;0;3) ∈ (Oxz)
Đáp án D
Phương pháp: (Oxy): z = 0, (Oyz): x = 0, (Oxz): y = 0
Trục Oy: x = 0 y = t z = 0
Cách giải: M (1;0;3) ∈ (Oxz)
Trong không gian với hệ tọa độ Oxyz, gọi a,b,c lần lượt là khoảng cách từ điểm M 1 ; 3 ; 2 đến ba mặt phẳng tọa độ O x y , O y z , O x z . Tính P = a + b 2 + c 3
A. P = 12.
B. P = 32.
C. P = 30.
D. P = 18.
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A 1 ; 2 ; 3 . Gọi A 1 A 2 A 3 lần lượt là hình chiếu vuông góc của A lên các mặt phẳng O y z , O z x , O x y . Phương trình của mặt phẳng A 1 A 2 A 3 là
A. x 1 + y 2 + z 3 = 0
B. x 3 + y 6 + z 9 = 1
C. x 1 + y 2 + z 3 = 1
D. x 2 + y 4 + z 6 = 1
Trong không gian Oxyz, cho hai điểm A 6 ; − 3 ; 4 , B a ; b ; c . Gọi M, N, P lần lượt là giao điểm của đường thẳng AB với các mặt phẳng tọa độ (Oxy), (Oxz), (Oyz). Biết rằng M, N, P nằm trên đoạn AB sao cho AM = MN = NP = PB. Tính giá trị của tổng a + b + c.
A. a+b+c = 11
B.a+b+c = -11
C.a+b+c = 17
D.a+b+c = -17
Trong không gian với hệ toạ độ Oxyz, cho điểm A(9;-3; 5),B(a;b; c). Gọi M, N, P lần lượt là giao điểm của đường thẳng AB với các mặt phẳng toạ độ (Oxy),(Oxz)và(Oyz). Biết M, N, P nằm trên đoạn AB sao cho AM=MN=NP=PB. Giá trị của tổng a+b+c là
A. -21
B. -15
C. 15
D. 21
Trong không gian với hệ tọa độ Oxyz, cho điểm A(9;-3;5), B(a,b,c). Gọi M, N, P lần lượt là giao điểm của đường thẳng AB với các mặt phẳng tọa độ (Oxy);(Oxz);(Oyz). Biết M,N,P nằm trên đoạn AB sao cho AN = MN = NP = PB. Giá trị của tổng a + b + c là
A. -21
B. 15
C. 21
D. -15
Trong không gian với hệ tọa độ Oxyz, cho điểm A(2;0;-2), B(3;-1;-4), C(-2;2;0). Điểm D trong mặt phẳng (Oyz) có tung độ dương sao cho thể tích của khối tứ diện ABCD bằng 2 và khoảng cách từ D đến mặt phẳng (Oxy) bằng 1 có thể là:
A. D(0;-3;-1)
B. D(0;1;-1)
C. D(0;2;-1)
D. D(0;3;-1)
Trong không gian với hệ tọa độ Oxyz, cho điểm A(2;0;-2), B(3;-2;-4), C(-2;2;0). Điểm D trong mặt phẳng (Oyz) có tung độ dương và cao độ âm sao cho thể tích của khối tứ diện ABCD bằng 2 và khoảng cách từ D đến mặt phẳng (Oxy) bằng 1 có thể là:
A. D 0 ; − 3 ; − 1
B. D 0 ; 1 ; − 1
C. D 0 ; 2 ; − 1
D. D 0 ; 3 ; − 1
Trong không gian với hệ tọa độ Oxyz, cho điểm M(3;2;1). Mặt phẳng (P) đi qua điểm M và cắt các trục tọa độ Ox, Oy, Oz lần lượt tại các điểm A, B, C không trùng với điểm gốc tọa độ sao cho M là trực tâm tam giác ABC. Trong các mặt phẳng sau, tìm mặt phẳng song song với mặt phẳng (P).
A. 3 x + 2 y + z + 14 = 0
B. 2 x + y + 3 z + 9 = 0
C. 3 x + 2 y + z - 14 = 0
D. 2 x + y + z - 9 = 0
Trong không gian với hệ toạ độ Oxyz, cho điểm M(3;2;l). Mặt phẳng (P) đi qua M và cắt các trục toạ độ Ox,Oy,Oz lần lượt tại các điểm A, B, C không trùng với gốc toạ độ sao cho M là trực tâm của tam giác ABC. Trong các mặt phẳng sau, tìm mặt phẳng song song với mặt phẳng (P).
A. 3x+2y+z+14= 0
B. 2x+y+3z+9= 0
C. 3x+2y+z-14= 0
D. 2x+y+z-9= 0
Trong không gian Oxyz, cho điểm M 2 ; 0 ; 1 . Gọi A, B lần lượt là hình chiếu của M trên trục Ox và trên mặt phẳng (Oyz). Viết phương trình mặt trung trực của đoạn AB.
A. 4 x - 2 z - 3 = 0 .
B. 4 x - 2 y - 3 = 0
C. 4 x - 2 z + 3 = 0 .
D. 4 x + 2 z + 3 = 0 .