Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : a x + b y + c z - 9 = 0 đi qua hai điểm A 3 ; 2 ; 1 , B - 3 ; 5 ; 2 và vuông góc với mặt phẳng Q : 3 x + y + z + 4 = 0 . Tính tổng S = a + b + c
A. S = -12
B. S = 21
C. S = -4
D. S = 7
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): x+2y-2z-10=0 với hai điểm A(1;2;0), B(-1;3;1). Gọi (Q) là một mặt phẳng đi qua A, B đồng thời tạo với (P) một góc nhỏ nhất. Biết rằng phương trình tổng quát của mặt phẳng (Q) là: ax+by+cz+d=0 với a, b, c, d là những số thực, Khi đó giá trị của tổng S = b + c + d bằng
A. 10
B. 12
C. 18
D. -8
Trong không gian tọa độ Oxyz, cho hai điểm A(2;1;3), B(6;5;5). Gọi (S) là mặt cầu có đường kính AB. Mặt phẳng (P) vuông góc với đoạn AB tại H sao cho khối nón đỉnh A và đáy là hình tròn tâm H (giao của mặt cầu (S) và mặt phẳng (P) có thể tích lớn nhất, biết rằng (P)+2x+by+cz+d=0 với b,c,d∈Z. Tính S=b+c+d.
A. S = -18.
B. S = -11
C. S = -24
D. S = -14
Trong không gian với hệ trục tọa độ Oxyz cho hai điểm A (2;1;3), B (6;5;5). Gọi (S) là mặt cầu đường kính AB Mặt phẳng (P) vuông góc với AB tại H sao cho khối nón đỉnh A và đáy là hình tròn tâm H (giao của mặt cầu (S) và mặt phẳng (P)) có thể tích lớn nhất, biết rằng (P): 2x + by + cz + d = 0 với b,c,d ∈ Z. Tính S = b + c + d .
A. S = 18
B. S = -18
C. S = -12
D. S = 24
Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A B (3; 2;6), (0;1;0) - và mặt cầu (S): . Mặt phẳng (P): ax + by + cz – 2 = 0 đi qua A, B và cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất. Tính T = a + b + c
A. T = 5
B. T = 3
C. T = 2
D. T = 4
Trong không gian Oxyz cho mặt cầu (S): ( x - 1 ) 2 + ( y + 2 ) 2 + ( z - 3 ) 2 = 27 . Gọi ( α ) là mặt phẳng đi qua hai điểm A(0;0;-4), B(2;0;0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón có đỉnh là tâm của (S), đáy là (C) có thể tích lớn nhất. Biết mặt phẳng ( α ) có phương trình dạng ax+by-z+c= 0, khi đó a-b+c bằng:
A. -4.
B. 8
C. 0
D. 2
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu S : x − 1 2 + y − 2 2 + z − 3 2 = 16 và các điểm A 1 ; 0 ; 2 , B − 1 ; 2 ; 2 . Gọi (P) là mặt phẳng đi qua hai điểm A, B sao cho thiết diện của mặt phẳng (P) với mặt cầu (S) có diện tích nhỏ nhất. Khi viết phương trình (P) dưới dạng ax+by+cz+3=0. Tính tổng T=a+b+c
A. 3
B. -3
C. 0
D. -2
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu S : x - 1 2 + y - 2 2 + z - 3 2 = 16 và các điểm A(1;0;2), B(-1;2;2). Gọi (P) là mặt phẳng đi qua hai điểm A, B sao cho thiết diện của mặt phẳng (P) với mặt cầu (S) có diện tích nhỏ nhất. Khi viết phương trình (P) dưới dạng ax+by+cz+3=0. Tính tổng T=a+b+c
A. 3
B. -3
C. 0
D. -2
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu S : x − 1 2 + y − 2 2 + z − 3 2 = 16 và các điểm A 1 ; 0 ; 2 , B − 1 ; 2 ; 2 . Gọi (P) là mặt phẳng đi qua hai điểm A, B sao cho thiết diện của mặt phẳng (P) với mặt cầu (S) có diện tích nhỏ nhất. Khi viết phương trình (P) dưới dạng a x + b y + c z + 3 = 0. Tính tổng T = a + b + c
A. 3
B. -3
C. 0
D. -2