2.Cho tam giác ABC vuông tại A, đường cao AH . Biết AB = 6cm AC = 8cm . a) Tính BC; BH và số đo góc C (số đo góc làm tròn đến độ) b) Gọi E, F là hình chiếu của H trên AB, AC . Chứng minh AE.BE+AF. CF = A * H ^ 2 c) Gọi I là trung điểm của BC, AI cắt EF tại O. Chứng minh: 1/(O * A ^ 2) = 1/(A * E ^ 2) + 1/(A * F ^ 2)
cho tam giác ABC vuông tạiA , kẻ đường cao AH biết AB=4,AC =7,5
a) tính BC , CotB
b)chứng minh AB^2=8/15 BC .AH
Cho tam giác ABC vuông tại A, đường cao AH. Biết BH = 9; HC = 16. Tính độ dài các đoạn thẳng AH, AB, AC, số đo góc B, góc C?
cho tam giác ABCD vuông tại A biết AB = 6 cm AC bằng 8 cm 1. Giải tam giác vuông ABCD (số đo góc làm tròn đến độ) 2. Từ A kẻ AK vuông góc với BC ( K thuộc BC ). gọi E, F lần lượt là hình chiếu của K trên AB và AC, EF cắt AK tại i. chứng minh BK.KC = 4 EI . IF
Bài 5. Cho ∆ABC nhọn (AB <AC) nội tiếp (O), hai đường cao BE và CF cắt nhau tại H. Tia AH cắt BC tại D.
a)Chứng minh : các tứ giác BCEF, AEHF nội tiếp.
b)Vẽ đường kính AK của (O).Gọi M là trung điểm BC. Chứng minh : H và K đối xứng nhau qua M.
Giup minh voi a! Minh cam onn
Bài 1 Cho 2 biểu thức A=\(\sqrt{50}-3\sqrt{8}+\sqrt{\left(\sqrt{2}-1\right)^2}\)và B=\(\dfrac{x\sqrt{x}+1}{x-1}-\dfrac{x-1}{\sqrt{x}+1}\) (\(Đk:x\ge0;x\ne1\))
a) Rút gọn A,B
b)Tìm giá trị của x để giá trị biểu thức A bằng giá trị biểu thức B
Giải Hệ phương trình:
\(\left\{{}\begin{matrix}3\left(x+y\right)=\left(x+2y\right)\left(2x+y\right)\\\dfrac{1}{x+2y}+\dfrac{1}{\left(2x+y\right)^2}=3\end{matrix}\right.\)
1.1
a. \(\sqrt{12}\)-\(\sqrt{27}\)+\(\sqrt{4+2\sqrt{3}}\)
b. (\(\dfrac{\sqrt{a}}{2+\sqrt{a}}\) +\(\dfrac{4+a}{4-a}\) ).(2\(\sqrt{a}\) -a) với a ≥ 0, a ≠4
1.2 giải hệ phương trình \(\left\{{}\begin{matrix}3x-y=5\\2y-x=10\end{matrix}\right.\)
2. Rút gọn phương trình.
a) \(M=\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\)
b) \(P=(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{2}{x-\sqrt{x}}):\dfrac{1}{\sqrt{x}-1}\) với x >0, x ≠1
3. a) giải hệ phương trình \(\left\{{}\begin{matrix}4x-3y=2\\3y+4x=-18\end{matrix}\right.\)
b) \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+4}+\dfrac{4}{\sqrt{x}-4}\right)\dfrac{x+16}{\sqrt{x}+2}\) với x ≥0, x≠16
4. Tìm m để đường thẳng y=(2m-1)x+3 song song với đường thẳng y=5x-1
cho đường tròn tâm O ,đường kính AB .Trên tia tiếp tuyến Ax của đường trong (O) lấy điểm M(M khác A), kể tiếp tuyến MC với đường tròn (O)(C là tiếp điểm).(yêu cầu vẽ hình)
a)Chứng minh bốn điểm O,A,M,C cùng thuộc 1 đường tròn
b)chứng minh OM\(\perp\)AC tại I
c)Tia BM cắt đường tròn (O) tại D (D ≠ B).chứng minh :MA2 =MI.MO=MD.MB
d)chứng minh:góc OIB = góc OBM\(\)
giải phương trình
a) \(\sqrt{x-5}\)+\(\sqrt{4x-20}\)-\(\dfrac{1}{5}\)\(\sqrt{9x-45}\)=3
b) \(\sqrt{x-1}\)+\(\sqrt{4x-4}\)-\(\sqrt{25x-25}\)+2=0