Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng d 1 : x - 2 1 = y - 1 - 1 = z - 2 - 1 và d 2 : x = t y = 3 z = - 2 + t . Phương trình đường vuông góc chung của hai đường thẳng d 1 , d 2 là.
A. x = 2 + t y = 1 + 2 t z = 2 - t
B. x = 3 + t y = 3 - 2 t z = 1 - t
C. x = 2 + 3 t y = 1 - 2 t z = 2 - 5 t
D. x = 3 + t y = 3 z = 1 - t
Trong hệ tọa độ Oxyz, lập phương trình đường thẳng vuông góc chung ∆ của hai đường thẳng d 1 : x - 1 1 = y - 3 - 1 = z - 2 2 và d 2 : x = - 3 t y = t z = - 1 - 3 t
Trong hệ tọa độ Oxyz, lập phương trình đường vuông góc chung ∆ của hai đường thẳng d 1 : x - 1 1 = y - 3 - 1 = z - 2 2 , d 2 : x = - 3 t y = t z = - 1 - 3 t
A. x - 2 1 = y - 2 - 3 = z - 4 - 2
B. x - 3 - 1 = y + 1 1 = z - 2 1
C. x - 1 3 = y - 3 1 = z - 2 - 1
D. x 1 = y 6 = z + 1 1
Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng d : x - 2 2 = y - 3 3 = z + 4 - 5 và d ' : x + 1 3 = y - 4 - 2 = z - 4 - 1
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng ∆ 1 : x + 1 3 = y - 2 1 = z - 1 2 v à ∆ 2 : x - 1 1 = y 2 = z + 1 3 . Phương trình đường thẳng song song với d : x = 3 y = - 1 + t z = 4 + t và cắt hai đường thẳng ∆1;∆2 là:
A. x = 2 y = 3 - t z = 3 - t
B. x = - 2 y = - 3 - t z = - 3 - t
C. x = - 2 y = - 3 + t z = - 3 + t
D. x = 2 y = - 3 + t z = 3 + t
Trong không gian hệ tọa độ Oxyz, cho đường thẳng Δ là giao tuyến của hai mặt phẳng (P): z-1= 0 và (Q): x+y+z-3 =0. Gọi d là đường thẳng nằm trong mặt phẳng (P), cắt đường thẳng: \(\dfrac{x-1}{1}=\dfrac{y-2}{-1}=\dfrac{z-3}{-1}\) và vuông góc với đường thẳng Δ. Phương trình đường thẳng d là?
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng ∆ 1 : x + 1 3 = y - 2 1 = z - 1 2 và ∆ 2 : x - 1 1 = y 2 = z + 1 3 . Phương trình đường thẳng ∆ song song với d : x = 3 y = - 1 + t z = 4 + t và cắt hai đường thẳng Δ1; Δ2 là:
A. x = 2 y = 3 - t z = 3 - t
B. x = - 2 y = - 3 - t z = - 3 - t
C. x = - 2 y = - 3 + t z = - 3 + t
D. x = 2 y = - 3 + t z = 3 + t
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng ∆ 1 : x + 1 3 = y - 2 1 = z - 1 2 và ∆ 2 : x - 1 1 = y 2 = z + 1 3 . Phương trình đường thẳng ∆ song song với d : x = 3 y = - 1 + t z = 4 + t và cắt hai đường thẳng Δ1; Δ2 là:
A. x = 2 y = 3 - t z = 3 - t
B. x = - 2 y = - 3 - t z = - 3 - t
C. x = - 2 y = - 3 + t z = - 3 + t
D. x = 2 y = - 3 + t z = 3 + t
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;-2;3) và hai đường thẳng d 1 : x - 1 2 = y - 1 = z + 3 1 ; d 2 : x = 1 - t ; y = 2 t ; z = 1 . Viết phương trình đường thẳng △ đi qua A, vuông góc với cả d 1 và d 2