Ôn tập cuối năm môn Đại số

H24

Trong hệ tọa độ Oxy cho tam giác ABC cân tại A, M (-1; 1) và N (-1; -7) lần lượt thuộc các cạnh AB và tia đối của CA sao cho BM = CN. Biết rằng đường thẳng BC đi qua điểm E (-3; -1) và điểm B thuộc đường thẳng x + 4 = 0. Tìm tung độ điểm A

NL
22 tháng 7 2021 lúc 14:59

Gọi D là giao điểm MN và BC

Từ M kẻ ME vuông góc BC, từ N kẻ NF vuông góc BC

\(\widehat{B}=\widehat{C}=\widehat{NCF}\Rightarrow\Delta MBE=\Delta NCF\left(ch-gn\right)\)

\(\Rightarrow ME=NF\)

\(\Rightarrow\Delta MED=\Delta NFD\) 

\(\Rightarrow MD=ND\) hay D là trung điểm MN

\(\Rightarrow D\left(-1;3\right)\Rightarrow\overrightarrow{ED}=\left(2;4\right)=2\left(1;2\right)\)

Phương trình BC (hay ED) có dạng:

\(2\left(x+3\right)-1\left(y+1\right)=0\Leftrightarrow2x-y+5=0\)

Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}x+4=0\\2x-y+5=0\end{matrix}\right.\) \(\Rightarrow B\left(-4;-3\right)\)

\(\Rightarrow\overrightarrow{BM}=\left(3;4\right)\)  \(\Rightarrow cosB=\dfrac{\left|3.1+4.2\right|}{\sqrt{3^2+4^2}.\sqrt{1^2+2^2}}=\dfrac{11\sqrt[]{5}}{25}\)

Do C thuộc BC nên tọa độ dạng: \(C\left(c;2c+5\right)\Rightarrow\overrightarrow{NC}=\left(c+1;2c+12\right)\)

\(cosC=cosB=\dfrac{11\sqrt{5}}{25}=\dfrac{\left|1.\left(c+1\right)+2\left(2c+12\right)\right|}{\sqrt{1^2+2^2}.\sqrt{\left(c+1\right)^2+\left(2c+12\right)^2}}\)

\(\Leftrightarrow c^2+10c-96=0\Rightarrow\left[{}\begin{matrix}c=6\Rightarrow C\left(6;17\right)\\c=-16\Rightarrow C\left(-16;-27\right)\end{matrix}\right.\)

(Loại \(C\left(-16;-27\right)\) do D nằm giữa B và C)

Viết phương trình AB (qua M và B), viết phương trình AC (qua N và C). Tọa độ A là giao AB và AC

Bình luận (0)
NL
22 tháng 7 2021 lúc 14:59

undefined

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
VC
Xem chi tiết
EN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết