PB

Trong các số phức z thỏa mãn z + 4 - 3 i + z - 8 - 5 i = 2 38 . Tìm giá trị nhỏ nhất của z - 2 - 4 i .

A.  1 2

B.  5 2

C. 2

D. 1

CT
28 tháng 3 2019 lúc 17:06

Đáp án D.

Đặt z = x + y i , ( x , y ∈ ℝ ) .

Từ giả thiết ta có: x + 4 + y - 3 i + ( x - 8 ) + ( y - 5 ) i = 2 38  

⇔ x + 4 2 + y - 3 2 + x - 8 2 + y - 5 2 = 2 38 .

Áp dụng bất đẳng thức Bunyakovsky, ta có:

x + 4 2 + y - 3 2 + x + 8 2 + y - 5 2 ≤ ( 1 2 + 1 2 ) x + 4 2 + ( y - 3 ) 2 + ( x - 8 ) 2 + ( y - 5 ) 2 = 2 x 2 - 4 + y 2 - 8 y + 57 ⇔ 38 ≤ x - 2 2 + y - 4 2 + 37 ⇔ x - 2 2 + y - 4 2 ≥ 1  

Lại có z - 2 - 4 i = x - 2 + ( y + 4 ) i = x - 2 2 + ( y - 4 ) 2 ≥ 1 = 1 .

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết