Cho số phức z thỏa mãn: |z|= 4. Tập hợp các điểm trên mặt phẳng tọa độ biểu diễn số phức w thỏa mãn: w = (3+4i)z + i là một đường tròn có bán kính là:
A. 4.
B. 5.
C. 20.
D. 22.
Xét các số phức z thỏa mãn ( z ¯ +i)(z+2) là số thuần ảo. Trên mặt phẳng tọa độ, tập hợp tất cả
các điểm biểu diễn các số phức z là một đường tròn có bán kính bằng
A. 1
B. 5 4
C. 5 2
D. 3 2
Tập hợp các điểm biểu diễn số phức z thỏa mãn |z-1+i| = 2 là đường tròn có tâm và bán kính lần lượt là
A. I(-1;1), R = 4
B. I(-1;1), R = 2
C. I(1;-1), R = 2
D. I(1;-1), R = 4
Tập hợp tất cả các điểm biểu diễn các số phức z thỏa mãn | z ¯ +2-i| là đường tròn có tâm I và bán kính R lần lượt là
A. I(-2;-1), R = 4
B. I(-2;-1), R = 2
C. I(2;-1), R = 4
D. I(2;-1), R = 2
Cho số phức z thỏa mãn |z|=1. Biết tập hợp các điểm biểu diễn số phức w = (3 - 4i)z -1 + 2i là đường tròn tâm I, bán kính R. Tìm tọa độ tâm I và bán kính R của đường tròn đó.
Cho số phức z thỏa mãn điều kiện z - 3 + 4 i ≤ 2 . Trong mặt phẳng tọa độ, tập hợp điểm biểu diễn số phức w = 2 z + 1 - i là hình tròn có diện tích
Cho số phức z thỏa mãn tập hợp |z-1|=3. Biết rằng tập hợp các điểm biểu diễn số phức w với 3 − 2 i w = i z + 2 là một đường tròn. Tìm tọa độ tâm I và bán kính r của đường tròn đó.
A. I 8 13 ; 1 13 , r = 3 13
B. I − 2 ; 3 , r = 13
C. I 4 13 ; 7 13 , r = 3 13
D. I 2 3 ; − 1 2 , r = 3
Cho số phức z thỏa mãn tập hợp |z-1|=3. Biết rằng tập hợp các điểm biểu diễn số phức w với 3 − 2 i w = i z + 2 là một đường tròn. Tìm tọa độ tâm I và bán kính r của đường tròn đó.
A. I 8 13 ; 1 13 , r = 3 13
B. I − 2 ; 3 , r = 13
C. I 4 13 ; 7 13 , r = 3 13
D. I 2 3 ; − 1 2 , r = 3
Cho số phức z thỏa mãn |z| = 1. Biết tập hợp các điểm biểu diễn số phức w = (3 - 4i)z -1 + 2i là đường tròn tâm I, bán kính R. Tìm tọa đọ tâm I và bán kính R của đường tròn đó