MA

Trên đoạn thẳng AB lấy các điểm M và N (M nằm giữa A và N). Vẽ về một phía của AB các tam giác đều AMD, MNE, BNF. Gọi G là trọng tâm của tam giác DEF, h là khoảng cách từ G đến AB. Tính h theo AB.

TH
28 tháng 5 2023 lúc 20:40

- Kẻ các đường cao DH1, EH2, FH3 của các tam giác AMD, MNE, NBF.

- Gọi DI là trung tuyến của tam giác DEF \(\Rightarrow\dfrac{DG}{DI}=\dfrac{2}{3}\)

Hạ IH4 vuông góc với AB (H4 thuộc AB).

Dễ dàng chứng minh \(\left\{{}\begin{matrix}DH_1=\dfrac{\sqrt{3}}{2}AM\\EH_2=\dfrac{\sqrt{3}}{2}MN\\FH_3=\dfrac{\sqrt{3}}{2}BN\end{matrix}\right.\) và IH4 là đường trung bình của hình thang EH2H3F.

\(\Rightarrow IH_4=\dfrac{EH_2+FH_3}{2}=\dfrac{\dfrac{\sqrt{3}}{2}MN+\dfrac{\sqrt{3}}{2}BN}{2}=\dfrac{\sqrt{3}}{4}\left(MN+BN\right)\left(1\right)\)

Giờ ta tập trung vào hình thang DH1H4I. Hạ GK vuông góc với AB (K thuộc AB).

*Gọi T là giao của DH4 và GK.

Theo định lí Thales, ta có: \(\dfrac{GT}{IH_4}=\dfrac{DG}{DI}=\dfrac{2}{3}\Rightarrow IH_4=\dfrac{2}{3}GT\)

\(\dfrac{GI}{ID}=\dfrac{H_4T}{H_4D}=\dfrac{1}{3}\Rightarrow\dfrac{TK}{DH_1}=\dfrac{H_4T}{H_4D}=\dfrac{1}{3}\)

\(\Rightarrow TK=\dfrac{DH_1}{3}\)

\(\Rightarrow h=\dfrac{2IH_4}{3}+\dfrac{DH_1}{3}=\dfrac{2.\dfrac{\sqrt{3}}{4}\left(MN+BN\right)}{3}+\dfrac{\dfrac{\sqrt{3}}{2}AM}{3}=\dfrac{\sqrt{3}}{6}\left(AM+MN+BN\right)=\dfrac{\sqrt{3}}{6}AB\)

Bình luận (1)

Các câu hỏi tương tự
TH
Xem chi tiết
MA
Xem chi tiết
DN
Xem chi tiết
AM
Xem chi tiết
AM
Xem chi tiết
HN
Xem chi tiết
LP
Xem chi tiết
ND
Xem chi tiết
DT
Xem chi tiết